View source: R/combined_mxPBF.R
mxPBF_combined | R Documentation |
This function detects change points in both mean and covariance structure of multivariate Gaussian data using the Maximum Pairwise Bayes Factor (mxPBF). The function selects alpha that controls the empirical False Positive Rate (FPR), as suggested in the paper. The function conducts a multiscale approach using the function.
mxPBF_combined(
given_data,
nws,
alps,
a0 = 0.01,
b0 = 0.01,
FPR_want = 0.05,
n_sample = 300,
n_cores = 1
)
given_data |
An |
nws |
A set of window sizes for change point detection. |
alps |
A grid of alpha values used in the empirical False Positive Rate (FPR) method. |
a0 |
A hyperparameter |
b0 |
A hyperparameter |
FPR_want |
Desired False Positive Rate for selecting alpha, used in the empirical FPR method (default: 0.05). |
n_sample |
Number of simulated samples to estimate the empirical FPR, used in the empirical FPR method (default: 300). |
n_cores |
Number of threads for parallel execution via OpenMP (default: 1). |
A list provided. Each element in the list contains:
A list result from the mxPBF_cov()
function.
A list result from the mxPBF_mean()
function applied to each segmented data.
Locations of detected change points identified by mxPBF_cov()
function.
Locations of detected change points identified by mxPBF_mean()
function.
nws <- c(25, 60, 100)
alps <- seq(1,10,0.05)
## H0 data
mu1 <- rep(0,10)
sigma1 <- diag(10)
X <- mvrnorm_cpp(500, mu1, sigma1)
res1 <- mxPBF_combined(X, nws, alps)
## H1 data
mu2 <- rep(1,10)
sigma2 <- diag(10)
for (i in 1:10) {
for (j in i:10) {
if (i == j) {
next
} else {
cov_value <- rnorm(1, 1, 1)
sigma2[i, j] <- cov_value
sigma2[j, i] <- cov_value
}
}
}
sigma2 <- sigma2 + (abs(min(eigen(sigma2)$value))+0.1)*diag(10) # Make it nonsingular
Y1 <- mvrnorm_cpp(150, mu1, sigma1)
Y2 <- mvrnorm_cpp(150, mu2, sigma1)
Y3 <- mvrnorm_cpp(200, mu2, sigma2)
Y <- rbind(Y1, Y2, Y3)
res2 <- mxPBF_combined(Y, nws, alps)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.