View source: R/hdcate_main_operators.R
HDCATE.inference | R Documentation |
Construct uniform confidence bands
HDCATE.inference( HDCATE_model, sig_level = 0.01, n_rep_boot = 1000, verbose = FALSE )
HDCATE_model |
an object created via HDCATE |
sig_level |
a (vector of) significant level, such as 0.01, or c(0.01, 0.05, 0.10) |
n_rep_boot |
repeat n times for bootstrap, the default is 1000 |
verbose |
whether the verbose message is displayed, the default is |
None. The HDCATE confidence bands are constructed.
# get simulation data n_obs <- 500 # Num of observations n_var <- 100 # Num of observed variables n_rel_var <- 4 # Num of relevant variables data <- HDCATE.get_sim_data(n_obs, n_var, n_rel_var) # conditional expectation model is misspecified x_formula <- paste(paste0('X', c(2:n_var)), collapse ='+') # propensity score model is misspecified # x_formula <- paste(paste0('X', c(1:(n_var-1))), collapse ='+') # create a new HDCATE model model <- HDCATE(data=data, y_name='Y', d_name='D', x_formula=x_formula) HDCATE.set_condition_var(model, 'X2', min=-1, max=1, step=0.01) HDCATE.fit(model) HDCATE.inference(model)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.