View source: R/nc.hdqr-methods.R
predict.nc.hdqr | R Documentation |
Produces fitted values for new predictor data using a fitted 'nc.hdqr()' object.
## S3 method for class 'nc.hdqr'
predict(object, newx, s = NULL, ...)
object |
Fitted 'nc.hdqr()' object from which predictions are to be derived. |
newx |
Matrix of new predictor values for which predictions are desired. This must be a matrix and is a required argument. |
s |
Values of the penalty parameter 'lambda' for which predictions are requested. Defaults to the entire sequence used during the model fit. |
... |
Not used. |
This function generates predictions at specified 'lambda' values from a fitted 'nc.hdqr()' object. It is essential to provide a new matrix of predictor values ('newx') at which these predictions are to be made.
Returns a vector or matrix of predicted values corresponding to the specified 'lambda' values.
nc.hdqr
, coef.nc.hdqr
set.seed(315)
n <- 100
p <- 400
x <- matrix(data = rnorm(n * p, mean = 0, sd = 1), nrow = n, ncol = p)
beta_star <- c(c(2, 1.5, 0.8, 1, 1.75, 0.75, 0.3), rep(0, (p - 7)))
eps <- rnorm(n, mean = 0, sd = 1)
y <- x %*% beta_star + eps
tau <- 0.5
lam2 <- 0.01
lambda <- 10^(seq(1,-4, length.out=30))
nc.fit <- nc.hdqr(x=x, y=y, tau=tau, lambda=lambda, lam2=lam2, pen="scad")
nc.preds <- predict(nc.fit, newx = tail(x), s = nc.fit$lambda[3:5])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.