dfr_aedd | R Documentation |
Autoencoder-Based method for concept drift detection doi:0.1109/ICDMW58026.2022.00109.
dfr_aedd(
encoding_size,
ae_class = autoenc_encode_decode,
batch_size = 32,
num_epochs = 1000,
learning_rate = 0.001,
window_size = 100,
monitoring_step = 1700,
criteria = "mann_whitney",
alpha = 0.01,
reporting = FALSE
)
encoding_size |
Encoding Size |
ae_class |
Autoencoder Class |
batch_size |
Batch Size for batch learning |
num_epochs |
Number of Epochs for training |
learning_rate |
Learning Rate |
window_size |
Size of the most recent data to be used |
monitoring_step |
The number of rows that the drifter waits to be is updated |
criteria |
The method to be used to check if there is a drift. May be mann_whitney (default), kolmogorov_smirnov, levene |
alpha |
The significance threshold for the statistical test used in criteria |
reporting |
If TRUE, some data are returned as norm_x_oh, drift_input, hist_proj, and recent_proj. |
dfr_aedd
object
#See an example of using `dfr_aedd` at this
#https://github.com/cefet-rj-dal/heimdall/blob/main/multivariate/dfr_aedd.md
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.