dfr_aedd: Autoencoder-Based Drift Detection method

View source: R/dfr_aedd.R

dfr_aeddR Documentation

Autoencoder-Based Drift Detection method

Description

Autoencoder-Based method for concept drift detection doi:0.1109/ICDMW58026.2022.00109.

Usage

dfr_aedd(
  encoding_size,
  ae_class = autoenc_encode_decode,
  batch_size = 32,
  num_epochs = 1000,
  learning_rate = 0.001,
  window_size = 100,
  monitoring_step = 1700,
  criteria = "mann_whitney",
  alpha = 0.01,
  reporting = FALSE
)

Arguments

encoding_size

Encoding Size

ae_class

Autoencoder Class

batch_size

Batch Size for batch learning

num_epochs

Number of Epochs for training

learning_rate

Learning Rate

window_size

Size of the most recent data to be used

monitoring_step

The number of rows that the drifter waits to be is updated

criteria

The method to be used to check if there is a drift. May be mann_whitney (default), kolmogorov_smirnov, levene

alpha

The significance threshold for the statistical test used in criteria

reporting

If TRUE, some data are returned as norm_x_oh, drift_input, hist_proj, and recent_proj.

Value

dfr_aedd object

Examples

#See an example of using `dfr_aedd` at this
#https://github.com/cefet-rj-dal/heimdall/blob/main/multivariate/dfr_aedd.md

heimdall documentation built on June 8, 2025, 11:11 a.m.