eval_portfolio_moments | R Documentation |
Evaluate first four moments of a given portfolio's return, namely, mean, variance, skewness, and kurtosis.
eval_portfolio_moments(w, X_statistics)
w |
Numerical vector with portfolio weights. |
X_statistics |
Argument characterizing the constituents assets.
Either the sample parameters as obtained by function |
Four moments of the given portfolio.
Rui Zhou, Xiwen Wang, and Daniel P. Palomar
R. Zhou and D. P. Palomar, "Solving High-Order Portfolios via Successive Convex Approximation Algorithms," in IEEE Transactions on Signal Processing, vol. 69, pp. 892-904, 2021. <doi:10.1109/TSP.2021.3051369>.
X. Wang, R. Zhou, J. Ying, and D. P. Palomar, "Efficient and Scalable High-Order Portfolios Design via Parametric Skew-t Distribution," Available in arXiv, 2022. <https://arxiv.org/pdf/2206.02412v1.pdf>.
library(highOrderPortfolios) data(X50) # nonparametric case X_moments <- estimate_sample_moments(X50[, 1:10]) w_moments <- eval_portfolio_moments(w = rep(1/10, 10), X_statistics = X_moments) # parametric case (based on the multivariate skew t distribution) X_skew_t_params <- estimate_skew_t(X50[, 1:10]) w_moments <- eval_portfolio_moments(w = rep(1/10, 10), X_statistics = X_skew_t_params)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.