Florian Schwendinger Updated: 2025-04-20
This repository contains an R interface to the HiGHS solver. The HiGHS solver, is a high-performance open-source solver for solving linear programming (LP), mixed-integer programming (MIP) and quadratic programming (QP) optimization problems.
The package can be installed from CRAN
install.packages("highs")
or GitLab.
remotes::install_gitlab("roigrp/solver/highs")
It is possible to use a precompile HiGHS library by providing the system
variable R_HIGHS_LIB_DIR
. For example I used
mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=/Z/bin/highslib -DCMAKE_POSITION_INDEPENDENT_CODE:bool=ON -DSHARED:bool=OFF -DBUILD_TESTING:bool=OFF
make install
to install the HiGHS library to /Z/bin/highslib
Sys.setenv(R_HIGHS_LIB_DIR = "/Z/bin/highslib")
install.packages("highs")
# or
# remotes::install_gitlab("roigrp/solver/highs")
The highs package provides an API similar to Rglpk and a low
level API to the HiGHS solver. For most users using highs_solve
as
shown below should be the best choice.
The package functions can be grouped into the following categories:
highs_solve
.highs_model
and highs_solver
.highs_control
to construct the control object for
highs_solve
and highs_solver
.hi_new_model
and other functions starting with
hi_model_
.hi_new_solver
and other functions starting with
hi_solver_
.example_model
and solvers
example_solver
for the documentation examples.highs_available_solver_options
to get the available
solver options.highs_write_model
to write the model to a file.library("highs")
The the example models and solvers are included to have small examples available for the manual.
writeLines(ls("package:highs", pattern = "^example"))
#> example_model
#> example_solver
The low-level model functions allow to create and modify models. More details and examples can be found in the manual.
writeLines(ls("package:highs", pattern = "^hi(|_new)_model"))
#> hi_model_get_ncons
#> hi_model_get_nvars
#> hi_model_set_constraint_matrix
#> hi_model_set_hessian
#> hi_model_set_lhs
#> hi_model_set_lower
#> hi_model_set_ncol
#> hi_model_set_nrow
#> hi_model_set_objective
#> hi_model_set_offset
#> hi_model_set_rhs
#> hi_model_set_sense
#> hi_model_set_upper
#> hi_model_set_vartype
#> hi_new_model
The low-level solver functions allow to create and modify solvers. More details and examples can be found in the manual.
writeLines(ls("package:highs", pattern = "^hi(|_new)_solver"))
#> hi_new_solver
#> hi_solver_add_cols
#> hi_solver_add_rows
#> hi_solver_add_vars
#> hi_solver_change_constraint_bounds
#> hi_solver_change_variable_bounds
#> hi_solver_clear
#> hi_solver_clear_model
#> hi_solver_clear_solver
#> hi_solver_get_bool_option
#> hi_solver_get_constraint_bounds
#> hi_solver_get_constraint_matrix
#> hi_solver_get_dbl_option
#> hi_solver_get_int_option
#> hi_solver_get_lp_costs
#> hi_solver_get_model
#> hi_solver_get_num_col
#> hi_solver_get_num_row
#> hi_solver_get_option
#> hi_solver_get_options
#> hi_solver_get_sense
#> hi_solver_get_str_option
#> hi_solver_get_variable_bounds
#> hi_solver_get_vartype
#> hi_solver_infinity
#> hi_solver_info
#> hi_solver_run
#> hi_solver_set_coeff
#> hi_solver_set_constraint_bounds
#> hi_solver_set_integrality
#> hi_solver_set_objective
#> hi_solver_set_offset
#> hi_solver_set_option
#> hi_solver_set_options
#> hi_solver_set_sense
#> hi_solver_set_variable_bounds
#> hi_solver_solution
#> hi_solver_status
#> hi_solver_status_message
#> hi_solver_write_basis
#> hi_solver_write_model
The high level functions allow to work with models and solvers. More details and examples can be found in the manual.
args(highs_model)
#> function (Q = NULL, L, lower, upper, A = NULL, lhs = NULL, rhs = NULL,
#> types = rep.int(1L, length(L)), maximum = FALSE, offset = 0)
#> NULL
args(highs_solver)
#> function (model, control = highs_control())
#> NULL
args(highs_control)
#> function (threads = 1L, time_limit = Inf, log_to_console = FALSE,
#> ...)
#> NULL
args(highs_write_model)
#> function (model, file)
#> NULL
The main function highs_solve
.
library("highs")
args(highs_solve)
#> function (Q = NULL, L, lower, upper, A = NULL, lhs = NULL, rhs = NULL,
#> types = rep.int(1L, length(L)), maximum = FALSE, offset = 0,
#> control = highs_control())
#> NULL
# Minimize
# x_0 + x_1 + 3
# Subject to
# x_1 <= 7
# 5 <= x_0 + 2 x_1 <= 15
# 6 <= 3 x_0 + 2 x_1
# 0 <= x_0 <= 4
# 1 <= x_1
A <- rbind(c(0, 1), c(1, 2), c(3, 2))
s <- highs_solve(L = c(1.0, 1), lower = c(0, 1), upper = c(4, Inf),
A = A, lhs = c(-Inf, 5, 6), rhs = c(7, 15, Inf),
offset = 3)
str(s)
#> List of 6
#> $ primal_solution: num [1:2] 0.5 2.25
#> $ objective_value: num 5.75
#> $ status : int 7
#> $ status_message : chr "Optimal"
#> $ solver_msg :List of 6
#> ..$ value_valid: logi TRUE
#> ..$ dual_valid : logi TRUE
#> ..$ col_value : num [1:2] 0.5 2.25
#> ..$ col_dual : num [1:2] 0 0
#> ..$ row_value : num [1:3] 2.25 5 6
#> ..$ row_dual : num [1:3] 0 0.25 0.25
#> $ info :List of 18
#> ..$ valid : logi TRUE
#> ..$ mip_node_count : num -1
#> ..$ simplex_iteration_count : int 0
#> ..$ ipm_iteration_count : int 5
#> ..$ qp_iteration_count : int 0
#> ..$ crossover_iteration_count : int 0
#> ..$ primal_solution_status : chr "Feasible"
#> ..$ dual_solution_status : chr "Feasible"
#> ..$ basis_validity : int 1
#> ..$ objective_function_value : num 5.75
#> ..$ mip_dual_bound : num 0
#> ..$ mip_gap : num Inf
#> ..$ num_primal_infeasibilities: int 0
#> ..$ max_primal_infeasibility : num 0
#> ..$ sum_primal_infeasibilities: num 0
#> ..$ num_dual_infeasibilities : int 0
#> ..$ max_dual_infeasibility : num 0
#> ..$ sum_dual_infeasibilities : num 0
# Minimize
# 0.5 x^2 - 2 x + y
# Subject to
# x <= 3
zero <- .Machine$double.eps * 100
Q <- rbind(c(1, 0), c(0, zero))
L <- c(-2, 1)
A <- t(c(1, 0))
cntrl <- list(log_dev_level = 0L)
s <- highs_solve(Q = Q, L = L, A = A, lhs = 0, rhs = 3, control = cntrl)
str(s)
#> List of 6
#> $ primal_solution: num [1:2] 3 0
#> $ objective_value: num -6
#> $ status : int 10
#> $ status_message : chr "Unbounded"
#> $ solver_msg :List of 6
#> ..$ value_valid: logi TRUE
#> ..$ dual_valid : logi TRUE
#> ..$ col_value : num [1:2] 3 0
#> ..$ col_dual : num [1:2] 0 1
#> ..$ row_value : num 3
#> ..$ row_dual : num -2
#> $ info :List of 18
#> ..$ valid : logi TRUE
#> ..$ mip_node_count : num -1
#> ..$ simplex_iteration_count : int 1
#> ..$ ipm_iteration_count : int 0
#> ..$ qp_iteration_count : int 0
#> ..$ crossover_iteration_count : int 0
#> ..$ primal_solution_status : chr "Feasible"
#> ..$ dual_solution_status : chr "Infeasible"
#> ..$ basis_validity : int 1
#> ..$ objective_function_value : num -6
#> ..$ mip_dual_bound : num 0
#> ..$ mip_gap : num Inf
#> ..$ num_primal_infeasibilities: int 0
#> ..$ max_primal_infeasibility : num 0
#> ..$ sum_primal_infeasibilities: num 0
#> ..$ num_dual_infeasibilities : int 1
#> ..$ max_dual_infeasibility : num 1
#> ..$ sum_dual_infeasibilities : num 1
The HiGHs C++ library internally supports the matrix formats csc (compressed sparse column matrix) and csr (compressed Sparse Row array). The highs package currently supports the following matrix classes:
"matrix"
dense matrices, "dgCMatrix"
compressed sparse column matrix from the Matrix
package, "dgRMatrix"
compressed sparse row matrix from the Matrix
package, "matrix.csc"
compressed sparse column matrix from the SparseM
package, "matrix.csr"
compressed sparse row matrix from the SparseM
package, "simple_triplet_matrix"
coordinate format from the slam
package.If the constraint matrix A
is provided as dgCMatrix
, dgRMatrix
,
matrix.csc
or matrix.csr
the underlying data is directly passed to
HiGHs otherwise it is first transformed into the csc format an
afterwards passed to HiGHs
library("Matrix")
A <- rbind(c(0, 1), c(1, 2), c(3, 2))
csc <- as(A, "CsparseMatrix") # dgCMatrix
s0 <- highs_solve(L = c(1.0, 1), lower = c(0, 1), upper = c(4, Inf),
A = csc, lhs = c(-Inf, 5, 6), rhs = c(7, 15, Inf),
offset = 3)
csr <- as(A, "RsparseMatrix") # dgRMatrix
s1 <- highs_solve(L = c(1.0, 1), lower = c(0, 1), upper = c(4, Inf),
A = csr, lhs = c(-Inf, 5, 6), rhs = c(7, 15, Inf),
offset = 3)
library("SparseM")
csc <- as.matrix.csc(A)
s2 <- highs_solve(L = c(1.0, 1), lower = c(0, 1), upper = c(4, Inf),
A = csc, lhs = c(-Inf, 5, 6), rhs = c(7, 15, Inf),
offset = 3)
csr <- as.matrix.csr(A)
s3 <- highs_solve(L = c(1.0, 1), lower = c(0, 1), upper = c(4, Inf),
A = csr, lhs = c(-Inf, 5, 6), rhs = c(7, 15, Inf),
offset = 3)
library("slam")
stm <- as.simple_triplet_matrix(A)
s4 <- highs_solve(L = c(1.0, 1), lower = c(0, 1), upper = c(4, Inf),
A = stm, lhs = c(-Inf, 5, 6), rhs = c(7, 15, Inf),
offset = 3)
The function highs_available_solver_options
lists the available solver
options
d <- highs_available_solver_options()
d[["option"]] <- sprintf("`%s`", d[["option"]])
knitr::kable(d, row.names = FALSE)
| option | type |
|:------------------------------------------------|:--------|
| presolve
| string |
| solver
| string |
| parallel
| string |
| run_crossover
| string |
| time_limit
| double |
| read_solution_file
| string |
| read_basis_file
| string |
| write_model_file
| string |
| solution_file
| string |
| write_basis_file
| string |
| random_seed
| integer |
| ranging
| string |
| infinite_cost
| double |
| infinite_bound
| double |
| small_matrix_value
| double |
| large_matrix_value
| double |
| primal_feasibility_tolerance
| double |
| dual_feasibility_tolerance
| double |
| ipm_optimality_tolerance
| double |
| primal_residual_tolerance
| double |
| dual_residual_tolerance
| double |
| objective_bound
| double |
| objective_target
| double |
| threads
| integer |
| user_bound_scale
| integer |
| user_cost_scale
| integer |
| highs_debug_level
| integer |
| highs_analysis_level
| integer |
| simplex_strategy
| integer |
| simplex_scale_strategy
| integer |
| simplex_crash_strategy
| integer |
| simplex_dual_edge_weight_strategy
| integer |
| simplex_primal_edge_weight_strategy
| integer |
| simplex_iteration_limit
| integer |
| simplex_update_limit
| integer |
| simplex_min_concurrency
| integer |
| simplex_max_concurrency
| integer |
| log_file
| string |
| write_model_to_file
| bool |
| write_presolved_model_to_file
| bool |
| write_solution_to_file
| bool |
| write_solution_style
| integer |
| glpsol_cost_row_location
| integer |
| write_presolved_model_file
| string |
| output_flag
| bool |
| log_to_console
| bool |
| timeless_log
| bool |
| ipm_iteration_limit
| integer |
| pdlp_native_termination
| bool |
| pdlp_scaling
| bool |
| pdlp_iteration_limit
| integer |
| pdlp_e_restart_method
| integer |
| pdlp_d_gap_tol
| double |
| qp_iteration_limit
| integer |
| qp_nullspace_limit
| integer |
| iis_strategy
| integer |
| blend_multi_objectives
| bool |
| log_dev_level
| integer |
| log_githash
| bool |
| solve_relaxation
| bool |
| allow_unbounded_or_infeasible
| bool |
| use_implied_bounds_from_presolve
| bool |
| lp_presolve_requires_basis_postsolve
| bool |
| mps_parser_type_free
| bool |
| use_warm_start
| bool |
| keep_n_rows
| integer |
| cost_scale_factor
| integer |
| allowed_matrix_scale_factor
| integer |
| allowed_cost_scale_factor
| integer |
| ipx_dualize_strategy
| integer |
| simplex_dualize_strategy
| integer |
| simplex_permute_strategy
| integer |
| max_dual_simplex_cleanup_level
| integer |
| max_dual_simplex_phase1_cleanup_level
| integer |
| simplex_price_strategy
| integer |
| simplex_unscaled_solution_strategy
| integer |
| presolve_reduction_limit
| integer |
| restart_presolve_reduction_limit
| integer |
| presolve_substitution_maxfillin
| integer |
| presolve_rule_off
| integer |
| presolve_rule_logging
| bool |
| presolve_remove_slacks
| bool |
| simplex_initial_condition_check
| bool |
| no_unnecessary_rebuild_refactor
| bool |
| simplex_initial_condition_tolerance
| double |
| rebuild_refactor_solution_error_tolerance
| double |
| dual_steepest_edge_weight_error_tolerance
| double |
| dual_steepest_edge_weight_log_error_threshold
| double |
| dual_simplex_cost_perturbation_multiplier
| double |
| primal_simplex_bound_perturbation_multiplier
| double |
| dual_simplex_pivot_growth_tolerance
| double |
| presolve_pivot_threshold
| double |
| factor_pivot_threshold
| double |
| factor_pivot_tolerance
| double |
| start_crossover_tolerance
| double |
| less_infeasible_DSE_check
| bool |
| less_infeasible_DSE_choose_row
| bool |
| use_original_HFactor_logic
| bool |
| run_centring
| bool |
| max_centring_steps
| integer |
| centring_ratio_tolerance
| double |
| icrash
| bool |
| icrash_dualize
| bool |
| icrash_strategy
| string |
| icrash_starting_weight
| double |
| icrash_iterations
| integer |
| icrash_approx_iter
| integer |
| icrash_exact
| bool |
| icrash_breakpoints
| bool |
| mip_detect_symmetry
| bool |
| mip_allow_restart
| bool |
| mip_max_nodes
| integer |
| mip_max_stall_nodes
| integer |
| mip_max_start_nodes
| integer |
| mip_max_leaves
| integer |
| mip_max_improving_sols
| integer |
| mip_lp_age_limit
| integer |
| mip_pool_age_limit
| integer |
| mip_pool_soft_limit
| integer |
| mip_pscost_minreliable
| integer |
| mip_min_cliquetable_entries_for_parallelism
| integer |
| mip_report_level
| integer |
| mip_feasibility_tolerance
| double |
| mip_rel_gap
| double |
| mip_abs_gap
| double |
| mip_heuristic_effort
| double |
| mip_min_logging_interval
| double |
| mip_heuristic_run_rins
| bool |
| mip_heuristic_run_rens
| bool |
| mip_heuristic_run_root_reduced_cost
| bool |
| mip_heuristic_run_zi_round
| bool |
| mip_heuristic_run_shifting
| bool |
| mip_improving_solution_save
| bool |
| mip_improving_solution_report_sparse
| bool |
| mip_improving_solution_file
| string |
| mip_root_presolve_only
| bool |
| mip_lifting_for_probing
| integer |
for additional information see the HiGHS homepage.
HiGHS currently has the following status codes defined in HConst.h"
.
| enumerator | status | message |
|:-------------------------|-------:|:-----------------------------------|
| kNotset
| 0 | "Not Set"
|
| kLoadError
| 1 | "Load error"
|
| kModelError
| 2 | "Model error"
|
| kPresolveError
| 3 | "Presolve error"
|
| kSolveError
| 4 | "Solve error"
|
| kPostsolveError
| 5 | "Postsolve error"
|
| kModelEmpty
| 6 | "Empty"
|
| kOptimal
| 7 | "Optimal"
|
| kInfeasible
| 8 | "Infeasible"
|
| kUnboundedOrInfeasible
| 9 | "Primal infeasible or unbounded"
|
| kUnbounded
| 10 | "Unbounded"
|
| kObjectiveBound
| 11 | "Bound on objective reached"
|
| kObjectiveTarget
| 12 | "Target for objective reached"
|
| kTimeLimit
| 13 | "Time limit reached"
|
| kIterationLimit
| 14 | "Iteration limit reached"
|
| kUnknown
| 15 | "Unknown"
|
| kMin
| 0 | "Not Set"
|
| kMax
| 15 | "Unknown"
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.