hltsim | R Documentation |
Simulate the HLT model
hltsim(type, n, ntheta, lambda, id, dL, nB, beta = NULL)
type |
type of model to simulate. 'type = "1p"' for the partial credit model. 'type = "2p"' for the generalized partial credit model. |
n |
number of observations |
ntheta |
number first-level of latent dimensions |
lambda |
latent factor coefficients |
id |
number of questions |
dL |
number of levels for each question |
nB |
number of regression parameters. nB = ncol(z). |
beta |
what value to set the regression parameters. |
a 'list' containing
x - matrix of simulated item responses
theta - matrix of true latent ability
id - I.Ds for item membership to each dimension
namesx - vector of column names for each item
s.cor - true correlations between latent ability dimensions
s.delta - true difficulty parameters
s.lambda - true loading parameters
s.alpha - true discrimination parameters
xdat = hltsim(n = 250, type = "2p", ntheta = 4, lambda = c(0.5, 0.8, 0.9, 0.4), id = c(rep(0, 15), rep(1, 15), rep(2, 15), rep(3, 15)), dL = 2) mod1 = hlt(x = xdat$x, id = xdat$id, iter = 12e1, burn = 6e1, delta = 0.023) xdat = hltsim(n = 250, type = "2p", ntheta = 4, lambda = c(0.5, 0.8, 0.9, 0.4), id = c(rep(0, 15), rep(1, 15), rep(2, 15), rep(3, 15)), dL = 2, beta = c(0.5, -0.7), nB = 2) mod2 = hlt(x = xdat$x, id = xdat$id, z = xdat$z, iter = 12e1, burn = 6e1, delta = 0.023, nchains = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.