cbb: Coffee berry borer trapping data

Description Usage Format Details Source References Examples

Description

Data on counts of coffee berry borer obtained using different traps through time.

Usage

1

Format

A data frame with 288 observations on the following 4 variables.

week numeric week of observation (1 to 24)
block factor levels I II III IV
trap factor levels CV F SF
count numeric number of observed insects

Details

The coffee berry borer is a major pest of commercial coffee. The insect directly attacks the coffee fruit in development causing severe losses in bean production and quality. This data set was obtained in an experiment conducted by Mota (2013), where three types of traps (SF, F, CV) were randomized in each of four equidistant lines (blocks) of a coffee field. Each week, over a 24 week period, the insects were removed from the traps and counted.

Source

Demétrio, C. G. B., Hinde, J. and Moral, R. A. (2014) Models for overdispersed data in entomology. In Godoy, W. A. C. and Ferreira, C. P. (Eds.) Ecological modelling applied to entomology. Springer.

References

Mota, L. H. C. (2013) Desenvolvimento de armadilha de auto-inoculacao para o controlde de Hypothenemus hampei (Ferrari, 1867) (Coleoptera: Curculionidae) com Beauveria bassiana (Bals.) Vuil (Ascomycota: Hypocreales) em tecido sinetico. Master's dissertation, ESALQ-USP

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
data(cbb)
# exploratory plot
require(latticeExtra)
trellis.par.set(strip.background=list(col="lightgrey"))
useOuterStrips(xyplot(count ~ week | block + trap, data=cbb,
  layout=c(3,1),type="l", col=1, xlab="Week", ylab="Insect counts"))

# Poisson fit
model1 <- glm(count ~ block + trap*factor(week),
              data=cbb, family=poisson)
anova(model1, test="Chisq")
sum(resid(model1, ty="pearson")^2)
summary(model1)
hnp(model1, sim=19, conf=1)

## Not run: 
hnp(model1) # default call

## End(Not run)

# Quasi-Poisson fit
model2 <- glm(count ~ block + trap*factor(week), data=cbb,
              family=quasipoisson)
anova(model2, test="F")
summary(model2)
hnp(model2, sim=19, conf=1)

## Not run: 
hnp(model2) # default call

## End(Not run)

## for discussion on the analysis of this data set,
## see Demetrio et al. (2014)

Example output

Loading required package: MASS
Loading required package: latticeExtra
Loading required package: lattice
Analysis of Deviance Table

Model: poisson, link: log

Response: count

Terms added sequentially (first to last)


                  Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
NULL                                287    17688.2              
block              3    243.6       284    17444.6 < 2.2e-16 ***
trap               2   5721.4       282    11723.2 < 2.2e-16 ***
factor(week)      23   8539.4       259     3183.7 < 2.2e-16 ***
trap:factor(week) 46    454.3       213     2729.5 < 2.2e-16 ***
---
Signif. codes:  0***0.001**0.01*0.05.’ 0.1 ‘ ’ 1
[1] 2695.667

Call:
glm(formula = count ~ block + trap * factor(week), family = poisson, 
    data = cbb)

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-10.9119   -1.7382   -0.3523    1.0971   13.0833  

Coefficients:
                      Estimate Std. Error z value Pr(>|z|)    
(Intercept)            4.48219    0.05060  88.580  < 2e-16 ***
blockII                0.36597    0.03226  11.344  < 2e-16 ***
blockIII               0.44109    0.03178  13.879  < 2e-16 ***
blockIV                0.40526    0.03201  12.662  < 2e-16 ***
trapF                 -1.12996    0.09180 -12.309  < 2e-16 ***
trapSF                -1.75539    0.11816 -14.856  < 2e-16 ***
factor(week)2         -2.25438    0.14719 -15.316  < 2e-16 ***
factor(week)3         -0.53723    0.07469  -7.193 6.35e-13 ***
factor(week)4          0.02439    0.06376   0.383 0.702063    
factor(week)5         -0.53372    0.07461  -7.154 8.45e-13 ***
factor(week)6          0.77414    0.05483  14.119  < 2e-16 ***
factor(week)7         -1.36593    0.10061 -13.577  < 2e-16 ***
factor(week)8          0.27213    0.06021   4.520 6.19e-06 ***
factor(week)9         -0.30568    0.06965  -4.389 1.14e-05 ***
factor(week)10         0.16642    0.06164   2.700 0.006938 ** 
factor(week)11        -1.01572    0.08797 -11.546  < 2e-16 ***
factor(week)12         0.41366    0.05847   7.075 1.49e-12 ***
factor(week)13        -1.06821    0.08970 -11.909  < 2e-16 ***
factor(week)14        -1.74356    0.11757 -14.830  < 2e-16 ***
factor(week)15        -2.96733    0.20508 -14.469  < 2e-16 ***
factor(week)16        -2.60269    0.17273 -15.068  < 2e-16 ***
factor(week)17        -2.54862    0.16844 -15.130  < 2e-16 ***
factor(week)18        -3.78831    0.30490 -12.425  < 2e-16 ***
factor(week)19        -3.88362    0.31946 -12.157  < 2e-16 ***
factor(week)20        -0.12475    0.06625  -1.883 0.059681 .  
factor(week)21        -2.04307    0.13391 -15.258  < 2e-16 ***
factor(week)22        -1.81676    0.12131 -14.976  < 2e-16 ***
factor(week)23        -1.25895    0.09646 -13.052  < 2e-16 ***
factor(week)24        -1.49486    0.10598 -14.105  < 2e-16 ***
trapF:factor(week)2   -0.60464    0.37302  -1.621 0.105036    
trapSF:factor(week)2  -0.79014    0.53251  -1.484 0.137864    
trapF:factor(week)3   -1.15172    0.21548  -5.345 9.05e-08 ***
trapSF:factor(week)3  -1.81414    0.37747  -4.806 1.54e-06 ***
trapF:factor(week)4   -0.42668    0.14128  -3.020 0.002526 ** 
trapSF:factor(week)4  -0.09850    0.16968  -0.581 0.561574    
trapF:factor(week)5   -0.69388    0.18351  -3.781 0.000156 ***
trapSF:factor(week)5   0.29256    0.18062   1.620 0.105283    
trapF:factor(week)6   -0.43222    0.11790  -3.666 0.000246 ***
trapSF:factor(week)6   0.20669    0.13920   1.485 0.137573    
trapF:factor(week)7    0.33503    0.18533   1.808 0.070649 .  
trapSF:factor(week)7   0.40085    0.23082   1.737 0.082452 .  
trapF:factor(week)8    0.31353    0.11636   2.694 0.007051 ** 
trapSF:factor(week)8   0.37846    0.14745   2.567 0.010267 *  
trapF:factor(week)9   -0.15545    0.14602  -1.065 0.287059    
trapSF:factor(week)9   0.03374    0.17995   0.188 0.851260    
trapF:factor(week)10  -0.67937    0.14425  -4.710 2.48e-06 ***
trapSF:factor(week)10 -1.50620    0.24730  -6.090 1.13e-09 ***
trapF:factor(week)11  -0.57479    0.21298  -2.699 0.006958 ** 
trapSF:factor(week)11 -0.93019    0.32090  -2.899 0.003748 ** 
trapF:factor(week)12  -0.82552    0.13929  -5.926 3.10e-09 ***
trapSF:factor(week)12 -0.63979    0.17392  -3.679 0.000235 ***
trapF:factor(week)13  -0.43268    0.20733  -2.087 0.036896 *  
trapSF:factor(week)13 -1.16538    0.36202  -3.219 0.001286 ** 
trapF:factor(week)14  -0.74774    0.31163  -2.399 0.016421 *  
trapSF:factor(week)14 -0.49003    0.36992  -1.325 0.185265    
trapF:factor(week)15  -0.70262    0.54628  -1.286 0.198381    
trapSF:factor(week)15 -1.46348    1.02663  -1.426 0.154005    
trapF:factor(week)16  -0.25633    0.38382  -0.668 0.504231    
trapSF:factor(week)16  0.11778    0.42965   0.274 0.783978    
trapF:factor(week)17  -1.12133    0.53361  -2.101 0.035607 *  
trapSF:factor(week)17 -1.18905    0.73504  -1.618 0.105733    
trapF:factor(week)18   0.52383    0.51575   1.016 0.309795    
trapSF:factor(week)18 -0.64250    1.05113  -0.611 0.541033    
trapF:factor(week)19   0.43682    0.55536   0.787 0.431550    
trapSF:factor(week)19  0.55142    0.66879   0.825 0.409651    
trapF:factor(week)20  -0.37762    0.14589  -2.588 0.009644 ** 
trapSF:factor(week)20 -0.01561    0.17318  -0.090 0.928199    
trapF:factor(week)21   0.48334    0.23367   2.068 0.038600 *  
trapSF:factor(week)21  0.70330    0.27439   2.563 0.010373 *  
trapF:factor(week)22   0.37143    0.21935   1.693 0.090385 .  
trapSF:factor(week)22  0.43047    0.27247   1.580 0.114137    
trapF:factor(week)23  -1.60007    0.35607  -4.494 7.00e-06 ***
trapSF:factor(week)23 -2.07325    0.59543  -3.482 0.000498 ***
trapF:factor(week)24  -1.25880    0.34293  -3.671 0.000242 ***
trapSF:factor(week)24  0.15509    0.26190   0.592 0.553743    
---
Signif. codes:  0***0.001**0.01*0.05.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 17688.2  on 287  degrees of freedom
Residual deviance:  2729.5  on 213  degrees of freedom
AIC: 3997.8

Number of Fisher Scoring iterations: 6

Poisson model 
Poisson model 
Analysis of Deviance Table

Model: quasipoisson, link: log

Response: count

Terms added sequentially (first to last)


                  Df Deviance Resid. Df Resid. Dev        F    Pr(>F)    
NULL                                287    17688.2                       
block              3    243.6       284    17444.6   6.4161 0.0003517 ***
trap               2   5721.4       282    11723.2 226.0417 < 2.2e-16 ***
factor(week)      23   8539.4       259     3183.7  29.3369 < 2.2e-16 ***
trap:factor(week) 46    454.3       213     2729.5   0.7803 0.8408547    
---
Signif. codes:  0***0.001**0.01*0.05.’ 0.1 ‘ ’ 1

Call:
glm(formula = count ~ block + trap * factor(week), family = quasipoisson, 
    data = cbb)

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-10.9119   -1.7382   -0.3523    1.0971   13.0833  

Coefficients:
                      Estimate Std. Error t value Pr(>|t|)    
(Intercept)            4.48219    0.18001  24.900  < 2e-16 ***
blockII                0.36597    0.11477   3.189 0.001645 ** 
blockIII               0.44109    0.11306   3.901 0.000128 ***
blockIV                0.40526    0.11387   3.559 0.000459 ***
trapF                 -1.12996    0.32657  -3.460 0.000652 ***
trapSF                -1.75539    0.42036  -4.176 4.33e-05 ***
factor(week)2         -2.25438    0.52363  -4.305 2.54e-05 ***
factor(week)3         -0.53723    0.26571  -2.022 0.044441 *  
factor(week)4          0.02439    0.22683   0.108 0.914470    
factor(week)5         -0.53372    0.26542  -2.011 0.045600 *  
factor(week)6          0.77414    0.19506   3.969 9.88e-05 ***
factor(week)7         -1.36593    0.35791  -3.816 0.000178 ***
factor(week)8          0.27213    0.21419   1.271 0.205289    
factor(week)9         -0.30568    0.24777  -1.234 0.218678    
factor(week)10         0.16642    0.21929   0.759 0.448751    
factor(week)11        -1.01572    0.31297  -3.245 0.001362 ** 
factor(week)12         0.41366    0.20799   1.989 0.047996 *  
factor(week)13        -1.06821    0.31910  -3.348 0.000964 ***
factor(week)14        -1.74356    0.41825  -4.169 4.46e-05 ***
factor(week)15        -2.96733    0.72957  -4.067 6.70e-05 ***
factor(week)16        -2.60269    0.61448  -4.236 3.39e-05 ***
factor(week)17        -2.54862    0.59924  -4.253 3.16e-05 ***
factor(week)18        -3.78831    1.08469  -3.493 0.000582 ***
factor(week)19        -3.88362    1.13649  -3.417 0.000758 ***
factor(week)20        -0.12475    0.23567  -0.529 0.597117    
factor(week)21        -2.04307    0.47637  -4.289 2.72e-05 ***
factor(week)22        -1.81676    0.43155  -4.210 3.77e-05 ***
factor(week)23        -1.25895    0.34315  -3.669 0.000308 ***
factor(week)24        -1.49486    0.37703  -3.965 0.000100 ***
trapF:factor(week)2   -0.60464    1.32702  -0.456 0.649117    
trapSF:factor(week)2  -0.79014    1.89441  -0.417 0.677032    
trapF:factor(week)3   -1.15172    0.76656  -1.502 0.134464    
trapSF:factor(week)3  -1.81414    1.34284  -1.351 0.178139    
trapF:factor(week)4   -0.42668    0.50259  -0.849 0.396856    
trapSF:factor(week)4  -0.09850    0.60363  -0.163 0.870533    
trapF:factor(week)5   -0.69388    0.65283  -1.063 0.289033    
trapSF:factor(week)5   0.29256    0.64254   0.455 0.649349    
trapF:factor(week)6   -0.43222    0.41943  -1.030 0.303947    
trapSF:factor(week)6   0.20669    0.49519   0.417 0.676807    
trapF:factor(week)7    0.33503    0.65932   0.508 0.611876    
trapSF:factor(week)7   0.40085    0.82113   0.488 0.625937    
trapF:factor(week)8    0.31353    0.41396   0.757 0.449653    
trapSF:factor(week)8   0.37846    0.52454   0.721 0.471395    
trapF:factor(week)9   -0.15545    0.51946  -0.299 0.765038    
trapSF:factor(week)9   0.03374    0.64016   0.053 0.958013    
trapF:factor(week)10  -0.67937    0.51316  -1.324 0.186956    
trapSF:factor(week)10 -1.50620    0.87978  -1.712 0.088350 .  
trapF:factor(week)11  -0.57479    0.75766  -0.759 0.448911    
trapSF:factor(week)11 -0.93019    1.14160  -0.815 0.416093    
trapF:factor(week)12  -0.82552    0.49554  -1.666 0.097204 .  
trapSF:factor(week)12 -0.63979    0.61872  -1.034 0.302286    
trapF:factor(week)13  -0.43268    0.73758  -0.587 0.558077    
trapSF:factor(week)13 -1.16538    1.28790  -0.905 0.366557    
trapF:factor(week)14  -0.74774    1.10863  -0.674 0.500743    
trapSF:factor(week)14 -0.49003    1.31597  -0.372 0.709984    
trapF:factor(week)15  -0.70262    1.94340  -0.362 0.718054    
trapSF:factor(week)15 -1.46348    3.65221  -0.401 0.689034    
trapF:factor(week)16  -0.25633    1.36543  -0.188 0.851267    
trapSF:factor(week)16  0.11778    1.52847   0.077 0.938648    
trapF:factor(week)17  -1.12133    1.89832  -0.591 0.555351    
trapSF:factor(week)17 -1.18905    2.61488  -0.455 0.649772    
trapF:factor(week)18   0.52383    1.83479   0.285 0.775541    
trapSF:factor(week)18 -0.64250    3.73938  -0.172 0.863741    
trapF:factor(week)19   0.43682    1.97569   0.221 0.825230    
trapSF:factor(week)19  0.55142    2.37920   0.232 0.816942    
trapF:factor(week)20  -0.37762    0.51901  -0.728 0.467672    
trapSF:factor(week)20 -0.01561    0.61609  -0.025 0.979815    
trapF:factor(week)21   0.48334    0.83129   0.581 0.561566    
trapSF:factor(week)21  0.70330    0.97614   0.720 0.472013    
trapF:factor(week)22   0.37143    0.78032   0.476 0.634561    
trapSF:factor(week)22  0.43047    0.96931   0.444 0.657423    
trapF:factor(week)23  -1.60007    1.26671  -1.263 0.207909    
trapSF:factor(week)23 -2.07325    2.11825  -0.979 0.328811    
trapF:factor(week)24  -1.25880    1.21997  -1.032 0.303323    
trapSF:factor(week)24  0.15509    0.93170   0.166 0.867957    
---
Signif. codes:  0***0.001**0.01*0.05.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasipoisson family taken to be 12.65572)

    Null deviance: 17688.2  on 287  degrees of freedom
Residual deviance:  2729.5  on 213  degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 6

Quasi-Poisson model 
Quasi-Poisson model 

hnp documentation built on May 2, 2019, 12:40 p.m.