Nothing
#' @title Holistic Generalized Linear Models Package
#'
#' @description
#' The holistic generalized linear models package simplifies
#' estimating generalized linear models under constraints.
#' The constraints can be used to,
#' \itemize{
#' \item bound the domains of specific covariates,
#' \item impose linear constraints on the covariates,
#' \item induce sparsity via best subset selection,
#' \item impose sparsity on groups of variables,
#' \item restrict the pairwise correlation between the selected coefficients,
#' \item impose sign coherence constraints on selected covariates and
#' \item force all predictors within a group either to be selected or not.
#' }
#'
#' This sophisticated constraints are internally implemented via conic optimization.
#' However, the package is designed such that the user, is not required to
#' be familiar with conic optimization but is only required to have basic \R knowledge.
#'
#' @author
#' \itemize{
#' \item Benjamin Schwendinger (\strong{Maintainer} \email{benjaminschwe@gmail.com})
#' \item Florian Schwendinger
#' \item Laura Vana
#' }
#'
#' @references
#' \strong{Holistic regression} \cr
#' Schwendinger, B., Schwendinger, F., & Vana, L. (2024).
#' Holistic Generalized Linear Models.
#' \doi{10.18637/jss.v108.i07}.
#'
#' Bertsimas, D., & King, A. (2016).
#' OR Forum-An Algorithmic Approach to Linear Regression
#' Operations Research 64(1):2-16.
#' \doi{10.1287/opre.2015.1436}
#'
#' Bertsimas, D., & Li, M. L. (2020).
#' Scalable Holistic Linear Regression.
#' Operations Research Letters 48 (3): 203–8.
#' \doi{10.1016/j.orl.2020.02.008}.
#'
#' \strong{Constrained regression} \cr
#' McDonald, J. W., & Diamond, I. D. (1990).
#' On the Fitting of Generalized Linear Models with Nonnegativity Parameter Constraints.
#' Biometrics, 46 (1): 201–206.
#' \doi{10.2307/2531643}
#'
#' Slawski, M., & Hein, M. (2013).
#' Non-negative least squares for high-dimensional linear models: Consistency and sparse recovery without regularization.
#' Electronic Journal of Statistics, 7: 3004-3056.
#' \doi{10.1214/13-EJS868}
#'
#' Carrizosa, E., Olivares-Nadal, A. V., & Ramírez-Cobo, P. (2020).
#' Integer Constraints for Enhancing Interpretability in Linear Regression.
#' SORT. Statistics and Operations Research Transactions, 44: 67-98.
#' \doi{10.2436/20.8080.02.95}.
#'
#' Lawson, C. L., & Hanson, R. J. (1995).
#' Solving least squares problems. Society for Industrial and Applied Mathematics.
#' Society for Industrial and Applied Mathematics.
#' \doi{10.1137/1.9781611971217}
#'
#' \strong{Generalized Linear Models} \cr
#' McCullagh, P., & Nelder, J. A. (2019).
#' Generalized Linear Models (2nd ed.)
#' Routledge.
#' \doi{10.1201/9780203753736}.
#'
#' \strong{Conic Optimization} \cr
#' Boyd, S., & Vandenberghe, L. (2004).
#' Convex Optimization (1st ed.)
#' Cambridge University Press.
#' \url{https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf}.
#' \doi{10.1017/cbo9780511804441}
#'
#' Theußl, S., Schwendinger, F., & Hornik, K. (2020).
#' ROI: An Extensible R Optimization Infrastructure.
#' Journal of Statistical Software 94 (15): 1–64.
#' \doi{10.18637/jss.v094.i15}.
#'
#' @seealso
#' \code{\link{hglm}}, \code{\link{holiglm}}
#'
#' @docType package
#' @name holiglm-package
#'
#' @import slam
#' @import stats
#' @import ROI
#' @import ROI.plugin.ecos
#' @import checkmate
#' @importFrom utils head modifyList tail str combn capture.output
#' @aliases holiglm-package
"_PACKAGE"
#' @export
ROI::as.OP
#' @export
ROI::solution
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.