### get knitr just the way we like it knitr::opts_chunk$set( message = FALSE, warning = FALSE, error = FALSE, tidy = FALSE, cache = FALSE )

We present a toy example of a homomorphic computation involving maximum likelihood estimation.

Consider the following data motivated by an example from the `mle`

function in the `stats4`

R package: we wish to estimate $\lambda$, the
Poisson parameter $\lambda$ for randomly generated count data `y`

below:

library(stats4) set.seed(17822) y <- rpois(n = 40, lambda=10) # Easy one-dimensional MLE: nLL <- function(lambda) -sum(stats::dpois(y, lambda, log = TRUE)) fit0 <- mle(nLL, start = list(lambda = 5), nobs = NROW(y))

The function `nLL`

is the negative log-likelihood of the data and the
function `mle`

computes the maximum likelihood estimate that can be
printed out.

```
summary(fit0)
```

logLik(fit0)

Assume now that the data `y`

is distributed between three sites, none
of whom want to share actual data among each other or even with a
master computation process. They wish to keep their data secret but
are willing, together, to provide the sum of their local negative
log-likelihoods. They need to do this in a way so that the master
process will not be able to associate the contribution to the
likelihood from each site. To simulate this, let's partition the data
`y`

as follows.

y1 <- y[1:20] y2 <- y[21:27] y3 <- y[28:40]

The overall likelihood function $l(\lambda)$ for the entire data is therefore the sum of the likelihoods at each site: $l(\lambda) = l_1(\lambda)+l_2(\lambda)+l_3(\lambda).$ How can this likelihood be computed while maintaining privacy?

Assuming that every site including the master has access to a
homomorphic computation library such as `homomorpheR`

, the likelihood
can be computed in a privacy-preserving manner using the following
scheme. We use $E(x)$ and $D(x)$ to denote the encrypted and decrypted
values of $x$ respectively.

- Master generates a public/private key pair. Master distributes the public key to all sites. (The private key is not distributed and kept only by the master.)
- Master generates a random offset $r$ to obfuscate the intial likelihood.
- Master sends $E(r)$ and a guess $\lambda_0$ to site 1. Note that $\lambda$ is not encrypted.
- Site 1 computes $l_1 = l(\lambda_0, y_1)$, the local likelihood for local data $y_1$ using parameter $\lambda_0$. It then sends on $\lambda_0$ and $E(r) + E(l_1)$ to site 2.
- Site 2 computes $l_2 = l(\lambda_0, y_2)$, the local likelihood for local data $y_2$ using parameter $\lambda_0$. It then sends on $\lambda_0$ and $E(r) + E(l_1) + E(l_2)$ to site 3.
- Site 3 computes $l_3 = l(\lambda_0, y_3)$, the local likelihood for local data $y_3$ using parameter $\lambda_0$. It then sends on $E(r) + E(l_1) + E(l_2) + E(l_3)$ back to master.
- Master retrieves $E(r) + E(l_1) + E(l_2) + E(l_3)$ which, due to the homomorphism, is exactly $E(r+l_1+l_2+l_3) = E(r+l).$ So the master computes $D(E(r+l)) - r$ to obtain the value of the overall likelihood at $\lambda_0$.
- Master updates $\lambda_0$ with a new guess $\lambda_1$ and repeats steps 1-5. This process is iterated to convergence. For added security, even steps 0-5 can be repeated, at additional computational cost.

This is pictorially shown below.

The above implementation assumes that the encryption and decryption can happen with real numbers which is not the actual situation. Instead, we use rational approximations using a large denominator, $2^{256}$, say. In the future, of course, we need to build an actual library is built with rigorous algorithms guaranteeing precision and overflow/undeflow detection. For now, this is just an ad hoc implementation.

Also, since we are only using homomorphic additive properties, a partial homomorphic scheme such as the Paillier Encryption system will be sufficient for our computations.

We define a class to encapsulate our sites that will compute the
Poisson likelihood on site data given a parameter $\lambda$. Note how
the `addNLLAndForward`

method takes care to split the result into an
integer and fractional part while performing the arithmetic
operations. (The latter is approximated by a rational number.)

library(gmp) library(homomorpheR) Site <- R6::R6Class("Site", private = list( ## name of the site name = NA, ## only master has this, NA for workers privkey = NA, ## local data data = NA, ## The next site in the communication: NA for master nextSite = NA, ## is this the master site? iAmMaster = FALSE, ## intermediate result variable intermediateResult = NA ), public = list( ## Common denominator for approximate real arithmetic den = NA, ## The public key; everyone has this pubkey = NA, initialize = function(name, data, den) { private$name <- name private$data <- data self$den <- den }, setPublicKey = function(pubkey) { self$pubkey <- pubkey }, setPrivateKey = function(privkey) { private$privkey <- privkey }, ## Make me master makeMeMaster = function() { private$iAmMaster <- TRUE }, ## add neg log lik and forward to next site addNLLAndForward = function(lambda, enc.offset) { if (private$iAmMaster) { ## We are master, so don't forward ## Just store intermediate result and return private$intermediateResult <- enc.offset } else { ## We are workers, so add and forward ## add negative log likelihood and forward result to next site ## Note that offset is encrypted nllValue <- self$nLL(lambda) result.int <- floor(nllValue) result.frac <- nllValue - result.int result.fracnum <- as.bigq(numerator(as.bigq(result.frac) * self$den)) pubkey <- self$pubkey enc.result.int <- pubkey$encrypt(result.int) enc.result.fracnum <- pubkey$encrypt(result.fracnum) result <- list(int = pubkey$add(enc.result.int, enc.offset$int), frac = pubkey$add(enc.result.fracnum, enc.offset$frac)) private$nextSite$addNLLAndForward(lambda, enc.offset = result) } ## Return a TRUE result for now. TRUE }, ## Set the next site in the communication graph setNextSite = function(nextSite) { private$nextSite <- nextSite }, ## The negative log likelihood nLL = function(lambda) { if (private$iAmMaster) { ## We're master, so need to get result from sites ## 1. Generate a random offset and encrypt it pubkey <- self$pubkey offset <- list(int = random.bigz(nBits = 256), frac = random.bigz(nBits = 256)) enc.offset <- list(int = pubkey$encrypt(offset$int), frac = pubkey$encrypt(offset$frac)) ## 2. Send off to next site throwaway <- private$nextSite$addNLLAndForward(lambda, enc.offset) ## 3. When the call returns, the result will be in ## the field intermediateResult, so decrypt that. sum <- private$intermediateResult privkey <- private$privkey intResult <- as.double(privkey$decrypt(sum$int) - offset$int) fracResult <- as.double(as.bigq(privkey$decrypt(sum$frac) - offset$frac) / den) intResult + fracResult } else { ## We're worker, so compute local nLL -sum(stats::dpois(private$data, lambda, log = TRUE)) } }) )

We are now ready to use our sites in the computation.

We also choose a denominator for all our rational approximations.

keys <- PaillierKeyPair$new(1024) ## Generate new public and private key. den <- gmp::as.bigq(2)^256 #Our denominator for rational approximations

site1 <- Site$new(name = "Site 1", data = y1, den = den) site2 <- Site$new(name = "Site 2", data = y2, den = den) site3 <- Site$new(name = "Site 3", data = y3, den = den)

The master process is also a site but has no data. So has to be thus designated.

## Master has no data! master <- Site$new(name = "Master", data = c(), den = den) master$makeMeMaster()

site1$setPublicKey(keys$pubkey) site2$setPublicKey(keys$pubkey) site3$setPublicKey(keys$pubkey) master$setPublicKey(keys$pubkey)

Only master has private key for decryption.

master$setPrivateKey(keys$getPrivateKey())

Master will always send to the first site, and then the others have to forward results in turn with the last site returning to the master.

master$setNextSite(site1) site1$setNextSite(site2) site2$setNextSite(site3) site3$setNextSite(master)

fit1 <- mle(master$nLL, start = list(lambda = 5))

Print the summary.

```
summary(fit1)
```

logLik(fit1)

The results should be the same as above.

`distcomp`

and `opencpu`

One can imagine these sort of computations being constructed within the framework described the R package distcomp where the sites are opencpu servers and there is a master process executing the computation. Much work remains to be done to make this work in a seamless manner; however, as this proof-of-concept example shows, the technical hurdles are quite surmountable.

This is an initial proof-of-concept implementation that has to substantially improved for real-world use. You've been warned.

**Any scripts or data that you put into this service are public.**

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.