| is.nonpos | R Documentation |
Various utilities needing nonce functions
is.near_integer(i, tol=getOption("tolerance"))
is.nonpos(i)
is.zero(i)
isgood(x, tol)
thingfun(z, complex=FALSE)
crit(...)
lpham(x,n)
i |
Numerical vector of suspected integers |
tol |
Tolerance |
x |
Argument to |
z |
Complex vector |
complex |
In function |
n |
second argument to |
... |
Ignored |
Function is.near_integer(i) returns TRUE if
i is “near” [that is, within tol] an integer;
if the option is unset then 1e-11 is used.
Function is.nonpos() returns TRUE if i is
near a nonpositive integer
Function is.zero() returns TRUE if i is,
er, near zero
Function isgood() checks for all elements of x
having absolute values less than tol
Function thingfun() transforms input vector z by
each of the six members of the anharmonic group, viewed as a
subgroup of the Mobius group of functions. It returns a real
six-column matrix with columns being the modulus of
z,z/(z-1),1-z,1/z,1/(1-z),1-1/z. These six columns
correspond to the primary argument in equations 15.3.3 to 15.3.9,
p551 of AMS-55
Function crit() returns the two critical points,
\frac{1}{2}\pm\frac{\sqrt{3}i}{2}. These
points have unit modulus as do their six transforms by
thingfun()
Function lpham() returns the log of the Pochhammer
function
log\left(\Gamma(x+n)/\Gamma(x)\right)
Function isgood() uses zero as the default tolerance (argument
tol passed in from hypergeo());
compare the different meaning of tol used in
is.near_integer().
Here, “integer” means one of the sequence 0,\pm 1,\pm
2,\ldots [ie not the Gaussian integers].
Robin K. S. Hankin
is.near_integer(-3)
is.zero(4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.