| forecast | R Documentation |
Generates forecasts for the specified time series model. This method is implemented for: 1. Irregular Autoregressive models ('iAR') 2. Complex Irregular Autoregressive models ('CiAR') 3. Bivariate Autoregressive models ('BiAR')
forecast(x, ...)
x |
An object of class
|
... |
Additional arguments (unused). |
This method generates forecasts for the specified time series model. Depending on the class of the input object:
For iAR, the function supports three distribution families:
"norm" for normal distribution.
"t" for t-distribution.
"gamma" for gamma distribution.
For CiAR, the function uses complex autoregressive processes.
For BiAR, the function generates forecasts for a bivariate autoregressive process.
All required parameters (e.g., coefficients, time points) must be set before calling this method.
An updated object of class iAR, CiAR, or BiAR, where the forecast property contains the forecasted values.
Eyheramendy_2018iAR,\insertRefElorrieta_2019iAR,\insertRefElorrieta_2021iAR
# Example 1: Forecasting with a normal iAR model
library(iAR)
n=100
set.seed(6714)
o=iAR::utilities()
o<-gentime(o, n=n)
times=o@times
model_norm <- iAR(family = "norm", times = times, coef = 0.9)
model_norm <- sim(model_norm)
model_norm <- kalman(model_norm)
model_norm@tAhead=1.3
model_norm <- forecast(model_norm)
plot(times, model_norm@series, type = "l", main = "Original Series with Forecast")
points(max(times)+ model_norm@tAhead, model_norm@forecast, col = "blue", pch = 16)
plot_forecast(model_norm)
# Example 2: Forecasting with a CiAR model
set.seed(6714)
model_CiAR <- CiAR(times = times,coef = c(0.9, 0))
model_CiAR <- sim(model_CiAR)
y=model_CiAR@series
y1=y/sd(y)
model_CiAR@series=y1
model_CiAR@series_esd=rep(0,n)
model_CiAR <- kalman(model_CiAR)
print(model_CiAR@coef)
model_CiAR@tAhead=1.3
model_CiAR <-forecast(model_CiAR)
model_CiAR@forecast
# Example 3: Forecasting with a BiAR model
n=80
set.seed(6714)
o=iAR::utilities()
o<-gentime(o, n=n)
times=o@times
model_BiAR <- BiAR(times = times,coef = c(0.9, 0.3), rho = 0.9)
model_BiAR <- sim(model_BiAR)
y=model_BiAR@series
y1=y/apply(y,2,sd)
model_BiAR@series=y1
model_BiAR@series_esd=matrix(0,n,2)
model_BiAR <- kalman(model_BiAR)
print(model_BiAR@coef)
model_BiAR@tAhead=1.3
model_BiAR <-forecast(model_BiAR)
model_BiAR@forecast
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.