acy | R Documentation |
The Amari-Cichocki-Yang (ACY) error is an asymmetric measure of dissimilarity between two nonsingular matrices X
and Y
. The ACY error: (a) is invariant to permutation and rescaling of the columns of X
and Y
, (b) ranges between 0 and n-1
, and (c) equals 0 if and only if X
and Y
are identical up to column permutations and rescalings.
acy(X,Y)
X |
Nonsingular matrix of dimension n \times n (test matrix). |
Y |
Nonsingular matrix of dimension n \times n (target matrix). |
The ACY error is defined as
\frac{1}{2n}∑_{i=1}^{n}≤ft(\frac{∑_{j=1}^{n}|a_{ij}|}{\max_{j}|a_{ij}|}-1\right) + \frac{1}{2n}∑_{j=1}^{n}≤ft(\frac{∑_{i=1}^{n}|a_{ij}|}{\max_{i}|a_{ij}|}-1\right)
where a_{ij} = (\mathbf{Y}^{-1}\mathbf{X})_{ij}.
Returns a scalar (the ACY error).
If Y
is singular, function will produce an error.
Nathaniel E. Helwig <helwig@umn.edu>
Amari, S., Cichocki, A., & Yang, H.H. (1996). A new learning algorithm for blind signal separation. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (Eds.), Advances in Neural Information Processing Systems, 8. Cambridge, MA: MIT Press.
########## EXAMPLE ########## set.seed(1) X <- matrix(runif(16),4,4) Y <- matrix(runif(16),4,4) Z <- X[,c(3,1,2,4)]%*%diag(1:4) acy(X,Y) acy(X,Z)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.