We consider studies in which information from errorprone diagnostic tests or selfreports are gathered sequentially to determine the occurrence of a silent event. Using a likelihoodbased approach incorporating the proportional hazards assumption, we provide functions to estimate the survival distribution and covariate effects. We also provide functions for power and sample size calculations for this setting.
Author  Xiangdong Gu and Raji Balasubramanian 
Date of publication  20160103 17:44:50 
Maintainer  Xiangdong Gu <ustcgxd@gmail.com> 
License  GPL (>= 2) 
Version  1.3.1 
Package repository  View on CRAN 
Installation  Install the latest version of this package by entering the following in R:



All man pages Function index File listing
Man pages  

datasim: Simulate data including multiple outcomes from errorprone...  
icmis: Maximum likelihood estimation for settings of errorprone...  
icpower: Study design in the presence of errorprone diagnostic tests...  
icpowerpf: Study design in the presence of interval censored outcomes...  
icpower.val: Study design in the presence of errorprone diagnostic tests... 
Functions  

Xmat_decode  Source code 
Xmat_norm  Source code 
bayesfit  Source code 
bayesmc  Source code 
bayesmc_pw  Source code 
bayesmc_pw_raw  Source code 
bayesmc_raw  Source code 
datasim  Man page Source code 
dmat  Source code 
fitsurv  Source code 
fitsurv_pw  Source code 
gamma_mean  Source code 
getrids  Source code 
gradlikA  Source code 
gradlikA0  Source code 
gradlikB  Source code 
gradlikB0  Source code 
gradlikC  Source code 
gradlikC0  Source code 
gradlikTA  Source code 
gradlikTB  Source code 
gradlik_lamb  Source code 
gradlik_pw  Source code 
iclasso  Source code 
iclasso_pw  Source code 
iclasso_pw_raw  Source code 
iclasso_raw  Source code 
icmis  Man page Source code 
icpower  Man page Source code 
icpower.val  Man page Source code 
icpowerpf  Man page Source code 
lassofit  Source code 
lassofit_pw  Source code 
lassofit_pw_raw  Source code 
lassofit_raw  Source code 
loglikA  Source code 
loglikA0  Source code 
loglikB  Source code 
loglikB0  Source code 
loglikC  Source code 
loglikC0  Source code 
loglikTA  Source code 
loglikTB  Source code 
loglik_lamb  Source code 
loglik_pw  Source code 
loglik_pw_raw  Source code 
loglik_raw  Source code 
maxlambda  Source code 
maxlambda_pw  Source code 
maxlambda_pw_raw  Source code 
maxlambda_raw  Source code 
powerdmat1  Source code 
powerdmat2  Source code 
powerdmat3  Source code 
powerdmat4  Source code 
simoutcome  Source code 
timeMat  Source code 
Files  

tests
 
tests/testthat.R  
tests/testthat
 
tests/testthat/test_power.R  
src
 
src/loglikC.cpp
 
src/dataproc.cpp
 
src/loglikA.cpp
 
src/powerfuncs.cpp
 
src/HighDimCR.cpp
 
src/loglikB.cpp
 
src/RcppExports.cpp
 
NAMESPACE
 
R
 
R/HighDimCR.R  
R/icpower.R  
R/icmis.R  
R/datasim.R  
R/RcppExports.R  
R/icpower.val.R  
R/icpowerpf.R  
README.md  
MD5
 
DESCRIPTION
 
man
 
man/icmis.Rd  
man/datasim.Rd  
man/icpower.Rd  
man/icpowerpf.Rd  
man/icpower.val.Rd 
Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.
Please suggest features or report bugs in the GitHub issue tracker.
All documentation is copyright its authors; we didn't write any of that.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.