| gendata | R Documentation |
gendata generates various artificial datasets for intrinsic dimension estimation experiments.
gendata( DataName = "SwissRoll", n = 300, p = NULL, noise = NULL, ol = NULL, curv = 1, seed = 123, sorted = FALSE )
DataName |
Name of dataset, one of the following:
|
n |
number of data points to be generated. |
p |
ambient dimension of the dataset. |
noise |
parameter to control noise level in the dataset. In many cases,
it is used for |
ol |
percentage of outliers, i.e., n * ol outliers are added to the generated dataset. |
curv |
a parameter to control the complexity of the embedded manifold. |
seed |
random number seed. |
sorted |
logical. If |
This function generates various artificial datasets often used in
manifold learning and dimension estimation researches.
For some datasets, complexity of the shape is controlled by the parameter curv.
The parameters noise and outlier are used for adding noise and/or
outliers for the dataset.
Data matrix. For ldbl dataset, it outputs a list composed of
x: data matrix and tDim: true intrinsic dimension for each point.
Hideitsu Hino hideitsu.hino@gmail.com
## global intrinsic dimension estimate x <- gendata(DataName='SwissRoll') estmle <- lbmle(x=x,k1=3,k2=5) print(estmle) ## local intrinsic dimension estimate tmp <- gendata(DataName='ldbl',n=1000) x <- tmp$x estmada <- mada(x=x,local=TRUE) head(estmada) ## estimated local intrinsic dimensions head(tmp$tDim) ## true local intrinsic dimensions
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.