immer-package | R Documentation |
Implements some item response models for multiple ratings, including the hierarchical rater model, conditional maximum likelihood estimation of linear logistic partial credit model and a wrapper function to the commercial FACETS program. See Robitzsch and Steinfeld (2018) for a description of the functionality of the package. See Wang, Su and Qiu (2014; <doi:10.1111/jedm.12045>) for an overview of modeling alternatives.
The immer package has following features:
Estimation of the hierarchical rater model (Patz et al., 2002) with
immer_hrm
and simulation of it with immer_hrm_simulate
.
The linear logistic partial credit model as an extension to the
linear logistic test model (LLTM) for dichotomous data can be estimated with
conditional maximum likelihood (Andersen, 1995) using immer_cml
.
The linear logistic partial credit model can be estimated with
composite conditional maximum likelihood (Varin, Reid & Firth, 2011) using the
immer_ccml
function.
The linear logistic partial credit model can be estimated with a bias-corrected
joint maximum likelihood method (Bertoli-Barsotti, Lando & Punzo, 2014)
using the immer_jml
function.
Wrapper function immer_FACETS
to the commercial
program FACETS (Linacre, 1999) for analyzing multi-faceted Rasch models.
...
Alexander Robitzsch [aut, cre], Jan Steinfeld [aut]
Maintainer: Alexander Robitzsch <robitzsch@ipn.uni-kiel.de>
Andersen, E. B. (1995). Polytomous Rasch models and their estimation. In G. H. Fischer & I. W. Molenaar (Eds.). Rasch Models (pp. 39-52). New York: Springer.
Bertoli-Barsotti, L., Lando, T., & Punzo, A. (2014). Estimating a Rasch Model via fuzzy empirical probability functions. In D. Vicari, A. Okada, G. Ragozini & C. Weihs (Eds.). Analysis and Modeling of Complex Data in Behavioral and Social Sciences, Springer.
Linacre, J. M. (1999). FACETS (Version 3.17)[Computer software]. Chicago: MESA.
Patz, R. J., Junker, B. W., Johnson, M. S., & Mariano, L. T. (2002). The hierarchical rater model for rated test items and its application to large-scale educational assessment data. Journal of Educational and Behavioral Statistics, 27(4), 341-384.
Robitzsch, A., & Steinfeld, J. (2018). Item response models for human ratings: Overview, estimation methods, and implementation in R. Psychological Test and Assessment Modeling, 60(1), 101-139.
Varin, C., Reid, N., & Firth, D. (2011). An overview of composite likelihood methods. Statistica Sinica, 21, 5-42.
Wang, W. C., Su, C. M., & Qiu, X. L. (2014). Item response models for local dependence among multiple ratings. Journal of Educational Measurement, 51(3), 260-280.
For estimating the Rasch multi-facets model with marginal
maximum likelihood see also the
TAM::tam.mml.mfr
and
sirt::rm.facets
functions.
For estimating the hierarchical rater model based on signal
detection theory see sirt::rm.sdt
.
For conditional maximum likelihood estimation of linear logistic
partial credit models see the eRm (e.g. eRm::LPCM
)
and the psychotools (e.g. psychotools::pcmodel
)
packages.
##
##
## immer 0.0-16 (2015-06-27)
##
##
## #@#################################################################@
## :#@##################################################################`
## #####################################################################+
## #####################################################################@
## .##########@###########################################################`
## +######@+;'@##########################################################@:
## ######' +@##########################################################
## #####+ ##' `##########################################################@
## ####@ #### +@#@##################################################@#####
## .#####.#####@######@#########@#@######@@####@##@############@######@#####`
## :####+:###@:,@##@,;##@+@##@+'###@;.'##@##@##@''@#####@@'+@###,;##@;######.
## ;####@ @## ##@ ,; :, .# ': :. ,@@#' '; ,+ @####.
## '#####`:## #@ : '' ++ @@; ` +; +' #@' `+@ #@ . #####,
## +######, # : , @#@ +#@ `##, @#@ @## `#@ `## @#` +, @####:
## +#######@@ :+@` ;##' `##@ .@# +##: `### .@. @#+ #: .##@@#####:
## '########: ##@ @#@, ;##; ;#@ @##` +##, +# `@#` ##########,
## ;######## @## ###` @##` @#+ `### @## ## ,;'@##@ @#########,
## :#######@ `##+ ,##@ @#@ @#, '##@ ##@ @@ `####### `##########.
## .#######+ ,##. @##+ `##@ .##` @##; ,##@ `## ###; #; :#@,+######
## #######' # @##: ,##; ;## @##` +### `@: `;#. @@: ######
## #######@,`,##.`,###,..###, #@#..,##@,..####:` +#@' ``#+#` `@#+ :#####@
## #########################: ,###################@#####@###@#@#########@
## '########################@+;+##########################################:
## ,######################################################################`
## ##@##################################################################@
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.