idm | R Documentation |
This function computes lower and upper posterior probabilities under an imprecise Dirichlet model when prior information is not available.
This function searches for the lower and upper bounds of a given level of the highest posterior density interval under the imprecise Dirichlet prior.
idm(nj, s = 1, N, tj = NA_real_, k, cA = 1) hpd( alpha = 3, beta = 5, p = 0.95, tolerance = 1e-04, maxiter = 100, verbose = FALSE )
nj |
number of observations in the j th category |
s |
learning parameter |
N |
total number of drawings |
tj |
mean probability associated with the j th category |
k |
number of elements in the sample space |
cA |
the number of elements in the event A |
alpha |
shape1 parameter of beta distribution |
beta |
shape2 parameter of beta distribution |
p |
level of credible interval |
tolerance |
level of error allowed |
maxiter |
maximum number of iterations |
verbose |
logical option suppressing messages |
idm
returns a list of lower and upper probabilities.
p.lower |
Minimum of imprecise probabilities |
p.upper |
Maximum of imprecise probabilities |
v.lower |
Variance of lower bound |
v.upper |
Variance of upper bound |
s.lower |
Standard deviation of lower bound |
s.upper |
Standard deviation of upper bound |
p |
Precise probabilty |
p.delta |
Degree of imprecision |
hpd
gives a list of scalar values corresponding to the lower and upper bounds of highest posterior probability density region.
Walley, P. (1996), Inferences from Multinomial Data: Learning About a Bag of Marbles. Journal of the Royal Statistical Society: Series B (Methodological), 58: 3-34. https://doi.org/10.1111/j.2517-6161.1996.tb02065.x
idm(nj=1, N=6, s=2, k=4) x <- hpd(alpha=3, beta=5, p=0.95) # c(0.0031, 0.6587) when s=2 # round(x,4); x*(1-x)^5
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.