genCookDist | R Documentation |
Case influence on a vector of parameters may be quantified by generalized Cook's Distance (gCD; Cook 1977, 1986):
gCD_i=(\hat{\mathbf{θ}}-\hat{\mathbf{θ}}_{(i)})' _a\hat{\mathbf{Σ}}(\hat{\mathbf{θ}}_{(i)})^{-1} (\hat{\mathbf{θ}}-\hat{\mathbf{θ}}_{(i)})
where \hat{\mathbf{θ}} and \hat{\mathbf{θ}}_{(i)} are l \times 1 vectors of parameter estimates obained from the original and delete i samples, and _a\hat{\mathbf{Σ}}(\hat{\mathbf{θ}}_{(i)}) is the estimated asymptotic covariance matrix of the parameter estimates obtained from reduced sample.
genCookDist(model, data, ...)
model |
A description of the user-specified model using the lavaan model syntax. See |
data |
A data frame containing the observed variables used in the model. If any variables are declared as ordered factors, this function will treat them as ordinal variables. |
... |
Additional parameters for |
Returns a vector of gCD_i.
If for observation i model does not converge or yelds a solution with negative estimated variances, the associated value of gCD_i is set to NA
.
Massimiliano Pastore
Cook, R.D. (1977). Detection of influential observations in linear regression. Technometrics, 19, 15-18.
Cook, R.D. (1986). Assessment of local influence. Journal of the Royal Statistical Society B, 48, 133-169.
Pek, J., MacCallum, R.C. (2011). Sensitivity Analysis in Structural Equation Models: Cases and Their Influence. Multivariate Behavioral Research, 46, 202-228.
## not run: this example take several minutes data("PDII") model <- " F1 =~ y1+y2+y3+y4 " # fit0 <- sem(model, data=PDII) # gCD <- genCookDist(model,data=PDII) # plot(gCD,pch=19,xlab="observations",ylab="Cook distance") ## not run: this example take several minutes ## an example in which the deletion of a case produces solution ## with negative estimated variances model <- " F1 =~ x1+x2+x3 F2 =~ y1+y2+y3+y4 F3 =~ y5+y6+y7+y8 " # fit0 <- sem(model, data=PDII) # gCD <- genCookDist(model,data=PDII) # plot(gCD,pch=19,xlab="observations",ylab="Cook distance")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.