interca | R Documentation |
The function performs multiple correspondence analysis (MCA) on a given data set and a given number of categorical variables. The function returns for each point for each axis the coordinates, the interpretive coordinates, the contributions, and the quality of display.
interca(data = data, numaxes = 10)
data |
A data frame containing the data to be analyzed. |
numaxes |
The number of categorical variables that will be retained for the calculation of the elements referred to in the function description. |
The function returns a list with the principal MCA coordinates coordinates (coords
), the interpretive MCA coordinates (ecoords
), the values of the CTR (ctr
) and COR (cor
), the labels of the variable categories (lbl
) and the scree plot (plot
).
Moschidis, S., Markos, A., & Thanopoulos, A. C. (2022). "Automatic" interpretation of multiple correspondence analysis (MCA) results for nonexpert users, using R programming. Applied Computing and Informatics, (ahead-of-print).
# Set the seed to ensure reproducibility set.seed(123) # Create three categorical variables X1 <- sample(c("X1_1", "X1_2"), size = 200, replace = TRUE) X2 <- sample(c("X2_1", "X2_2", "X2_3"), size = 200, replace = TRUE) X3 <- sample(c("X3_1", "X3_2", "X3_3", "X3_4"), size = 200, replace = TRUE) # the resulting data frame df <- data.frame(cbind(X1,X2,X3)) # convert to factors df$X1 <- factor(df$X1) df$X2 <- factor(df$X2) df$X3 <- factor(df$X3) res <- interca(df, 5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.