Introduction to interface

knitr::opts_chunk$set(
    collapse = TRUE,
    comment = "#>"
)

The interface package provides a system for defining and implementing interfaces in R, with runtime type checking. This approach brings some of the benefits of statically-typed languages to R, allowing for more structured and safer code.

Why Use Interfaces?

Interfaces in R can be beneficial for several reasons:

  1. Code Structure: They provide a clear contract for what properties and methods an object should have.
  2. Type Safety: They allow for runtime type checking, catching errors early.
  3. Documentation: They serve as self-documenting code, clearly stating the expected structure of objects.
  4. Flexibility: They allow for implementation of multiple interfaces, promoting code reuse.

interface package provides the following:

  1. Interfaces: Define and implement interfaces with type checking. Interfaces can be extended and nested.
  2. Typed Functions: Define functions with strict type constraints.
  3. Typed Data Frames: Create data frames with column type constraints and row validation. Data frames can have custom validation functions and row callbacks.
  4. Enums: Define and use enumerated types for stricter type safety.

Installation

To install the package, use the following command:

# Install the package from the source
remotes::install_github("dereckmezquita/interface")

Usage

Import the package functions.

box::use(interface[interface, type.frame, fun, enum])

Interfaces

To define an interface, use the interface() function:

# Define an interface
Person <- interface(
    name = character,
    age = numeric,
    email = character
)

# Implement the interface
john <- Person(
    name = "John Doe",
    age = 30,
    email = "john@example.com"
)

print(john)

# interfaces are lists
print(john$name)

# Valid assignment
john$age <- 10

print(john$age)

# Invalid assignment (throws error)
try(john$age <- "thirty")

Nested Interfaces and Extending Interfaces

You can create nested interfaces and extend existing interfaces:

# Define an Address interface
Address <- interface(
    street = character,
    city = character,
    postal_code = character
)

# Define a Scholarship interface
Scholarship <- interface(
    amount = numeric,
    status = logical
)

# Extend the Person and Address interfaces
Student <- interface(
    extends = c(Address, Person), # will inherit properties from Address and Person
    student_id = character,
    scores = data.table::data.table,
    scholarship = Scholarship # nested interface
)

# Implement the extended interface
john_student <- Student(
    name = "John Doe",
    age = 30,
    email = "john@example.com",
    street = "123 Main St",
    city = "Small town",
    postal_code = "12345",
    student_id = "123456",
    scores = data.table::data.table(
        subject = c("Math", "Science"),
        score = c(95, 88)
    ),
    scholarship = Scholarship(
        amount = 5000,
        status = TRUE
    )
)

print(john_student)

Custom Validation Functions

Interfaces can have custom validation functions:

is_valid_email <- function(x) {
    grepl("[a-z|0-9]+\\@[a-z|0-9]+\\.[a-z|0-9]+", x)
}

UserProfile <- interface(
    username = character,
    email = is_valid_email,
    age = function(x) is.numeric(x) && x >= 18
)

# Implement with valid data
valid_user <- UserProfile(
    username = "john_doe",
    email = "john@example.com",
    age = 25
)

print(valid_user)

# Invalid implementation (throws error)
try(UserProfile(
    username = "jane_doe",
    email = "not_an_email",
    age = "30"
))

Enums

Enums provide a way to define a set of named constants. They are useful for representing a fixed set of values and can be used in interfaces to ensure that a property only takes on one of a predefined set of values.

Creating and Using Enums

# Define an enum for days of the week
DaysOfWeek <- enum("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday")

# Create an enum object
today <- DaysOfWeek("Wednesday")
print(today)

# Valid assignment
today$value <- "Friday"
print(today)

# Invalid assignment (throws error)
try(today$value <- "NotADay")

Using Enums in Interfaces

Enums can be used as property types in interfaces:

# Define an interface using an enum
Meeting <- interface(
    title = character,
    day = DaysOfWeek,
    start_time = numeric,
    duration = numeric
)

# Create a valid meeting object
standup <- Meeting(
    title = "Daily Standup",
    day = "Monday",
    start_time = 9.5,  # 9:30 AM
    duration = 0.5  # 30 minutes
)

print(standup)

# Invalid day (throws error)
try(Meeting(
    title = "Invalid Meeting",
    day = "InvalidDay",
    start_time = 10,
    duration = 1
))

In-place Enum Declaration in Interfaces

You can also declare enums directly within an interface definition:

# Define an interface with an in-place enum
Task <- interface(
    description = character,
    priority = enum("Low", "Medium", "High"),
    status = enum("Todo", "InProgress", "Done")
)

# Create a task object
my_task <- Task(
    description = "Complete project report",
    priority = "High",
    status = "InProgress"
)

print(my_task)

# Update task status
my_task$status$value <- "Done"
print(my_task)

# Invalid priority (throws error)
try(my_task$priority$value <- "VeryHigh")

Enums provide an additional layer of type safety and clarity to your code. They ensure that certain properties can only take on a predefined set of values, reducing the chance of errors and making the code more self-documenting.

Typed Functions

Define functions with strict type constraints:

typed_fun <- fun(
    x = numeric,
    y = numeric,
    return = numeric,
    impl = function(x, y) {
        return(x + y)
    }
)

# Valid call
print(typed_fun(1, 2))  # [1] 3

# Invalid call (throws error)
try(typed_fun("a", 2))

Functions with Multiple Possible Return Types

typed_fun2 <- fun(
    x = c(numeric, character),
    y = numeric,
    return = c(numeric, character),
    impl = function(x, y) {
        if (is.numeric(x)) {
            return(x + y)
        } else {
            return(paste(x, y))
        }
    }
)

print(typed_fun2(1, 2))  # [1] 3
print(typed_fun2("a", 2))  # [1] "a 2"

Typed data.frame/data.tables

Create data frames with column type constraints and row validation:

PersonFrame <- type.frame(
    frame = data.frame, 
    col_types = list(
        id = integer,
        name = character,
        age = numeric,
        is_student = logical
    )
)

# Create a data frame
persons <- PersonFrame(
    id = 1:3,
    name = c("Alice", "Bob", "Charlie"),
    age = c(25, 30, 35),
    is_student = c(TRUE, FALSE, TRUE)
)

print(persons)

# Invalid modification (throws error)
try(persons$id <- letters[1:3])

Additional Options

PersonFrame <- type.frame(
    frame = data.frame,
    col_types = list(
        id = integer,
        name = character,
        age = numeric,
        is_student = logical,
        gender = enum("M", "F"),
        email = function(x) all(grepl("^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$", x)) # functions are applied to whole column
    ),
    freeze_n_cols = FALSE,
    row_callback = function(row) {
        if (row$age >= 40) {
            return(sprintf("Age must be less than 40 (got %d)", row$age))
        }
        if (row$name == "Yanice") {
            return("Name cannot be 'Yanice'")
        }
        return(TRUE)
    },
    allow_na = FALSE,
    on_violation = "error"
)

df <- PersonFrame(
    id = 1:3,
    name = c("Alice", "Bob", "Charlie"),
    age = c(25, 35, 35),
    is_student = c(TRUE, FALSE, TRUE),
    gender = c("F", "M", "M"),
    email = c("alice@test.com", "bob_no_valid@test.com", "charlie@example.com")
)

print(df)
summary(df)

# Invalid row addition (throws error)
try(rbind(df, data.frame(
    id = 4,
    name = "David",
    age = 500,
    is_student = TRUE,
    email = "d@test.com"
)))

Conclusion

This package provides powerful tools for ensuring type safety and validation in R. By defining interfaces, enums, typed functions, and typed data frames, you can create robust and reliable data structures and functions with strict type constraints.

This vignette demonstrates the basic usage and capabilities of the package. For more details, refer to the package documentation and examples provided in the source code.



Try the interface package in your browser

Any scripts or data that you put into this service are public.

interface documentation built on Sept. 11, 2024, 8:59 p.m.