View source: R/plot.intsel_cv.R
plot.intsel_cv | R Documentation |
intsel_cv
Plot the solution path or cross-validation curves produced by intsel_cv()
.
## S3 method for class 'intsel_cv'
plot(x, type = "cv-curve", ...)
x |
The |
type |
Character string, " |
... |
Other graphical parameters to plot |
The "solution-path
" plot produces a coefficient profile plot of the coefficient paths for a fitted intsel
model. The "cv-curve
" plot is the cvm
(red dot) for each lambda with its standard error (vertical bar). The two vertical dashed lines corresponds to the lambda.min
and lambda.1se
.
intsel
, intsel_cv
.
n <- 1000
p.int <- 5
p.noint <- 3
intercept <- TRUE
p.screen <- 5
p.int.expand <- p.int*(p.int-1)/2
p.main <- p.int + p.noint
x <- matrix(rnorm(n * p.main), nrow = n, ncol = p.main)
# true model
# logit(p) = 0.1 + 0.3 x1 + 0.3 x2 + 0.3 x8 + 0.2 * x1 * x2
beta.true <- rep(0, p.main)
beta.true[c(1, 2, p.main)] <- 0.3
eta <- x %*% beta.true + 0.2 * x[, 1] * x[, 2]
if (intercept) eta <- eta + 0.1
py <- 1/(1 + exp(-eta))
y <- rbinom(n, 1, py)
nlam <- 30
lambdas <- exp(seq(log(0.1), log(0.00005), length.out = nlam))
# All the pairwise two-way interactions for the first p.screen variables
# are included in the model and screened in a data-driven manner.
cv <- intsel_cv(x = x,
y = y,
p.screen =5,
intercept = intercept,
stepsize_init = 1,
lambda = lambdas,
nfolds = 5,
foldid = NULL)
plot(cv)
plot(cv, type = "solution-path")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.