summary.invGauss | R Documentation |
To be used on a result from invGauss
. The summary function provides estimates, standard errors etc.
## S3 method for class 'invGauss' summary(object, covariance = FALSE, ...)
object |
Result from running |
covariance |
Logical, indicates whether the asymptotic variance-covariance matrix for the parameter estimates should be returned. |
... |
Other arguments (ignored). |
See web page http://www.uib.no/smis/gjessing/projects/invgauss/ for more details.
Returns a list with the most important results from invGauss
, including coefficients with standard errors and Wald tests:
Estimated coefficients, with standard errors and Wald tests
The variance-covariance matrix of the estimated coefficients
The maximized log-likelihood
AIC value
Further information is found on the web page
Hakon K. Gjessing
Professor of Biostatistics
Division of Epidemiology
Norwegian Institute of Public Health
hakon.gjessing@fhi.no
http://www.uib.no/smis/gjessing
Aalen OO, Borgan O, Gjessing HK. Survival and Event History Analysis: A Process Point of View. Springer-Verlag, 2008.
Aalen OO and Gjessing HK. Understanding the Shape of the Hazard Rate: A Process Point of View. Statistical Science, 2001, Vol. 1, No. 1, 1-22.
Aalen OO. Phase type distributions in survival analysis. Scandinavian Journal of Statistics, 1995, Vol. 22, Issue 4, 447-463.
Web Site: http://www.uib.no/smis/gjessing/projects/invgauss/
invGauss
# Simple run: data(d.oropha.rec) res <- invGauss(formula.mu = Surv(time, status) ~ 1, data = d.oropha.rec) summary(res) # Use covariates for c, with exponential link function data(d.oropha.rec) res <- invGauss(formula.mu = Surv(time, status) ~ 1, formula.c = ~ cond + nstage + tstage, data = d.oropha.rec) # MODEL 5 (TABLE 10.2) IN SPRINGER BOOK summary(res)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.