The closed form expression is obtained for the log likelihood of a stationary inverse gamma stochastic volatility model by marginalising out the volatilities. This allows the user to obtain the maximum likelihood estimator for this non linear non Gaussian state space model. Further, the package can provide the smoothed estimates of the volatility by averaging draws from the exact posterior distribution of the inverse volatilities.
#install.packages("invgamstochvol")
library(invgamstochvol)
The data set that we use for this example has 150 observations. Ydep are the observed data, rho represents the parameter for the persistence of the volatility, p is the number of lags and Xdep are the regressors.
##simulate data n=150 dat<-data.frame(Ydep=runif(n,0.3,1.4)) Ydep <- as.matrix(dat, -1,ncol=ncol(dat)) littlerho=0.95 r0=1 rho=diag(r0)*littlerho p=4 n=4.1 T=nrow(Ydep) Xdep <- Ydep[p:(T-1),] if (p>1){ for(lagi in 2:p){ Xdep <- cbind(Xdep, Ydep[(p-lagi+1):(T-lagi),]) } } T=nrow(Ydep) Ydep <- as.matrix(Ydep[(p+1):T,]) T=nrow(Ydep) unos <- rep(1,T) Xdep <- cbind(unos, Xdep)
The matrix of residuals from OLS can be obtained as follows.
## obtain residuals bOLS <- solve(t(Xdep) %*% Xdep) %*% t(Xdep) %*% Ydep Res= Ydep- Xdep %*% bOLS Res=Res[1:T,1] b2=solve(t(Res) %*% Res/T) %*% (1-rho %*% rho)/(n-2) Res=as.matrix(Res,ncol=1)
The function lik_clo returns a list of 7 items. List item number 1, is the sum of the log likelihood, while the rest are constants that are useful to obtain the smoothed estimates of the volatility.
## obtain the log likelihood LL1=lik_clo(Res,b2,n,rho) LL1[1]
To obtain likelihood, the same approach as highlighted in the example using simulated data above applies. After obtaining the likelihood, we show how the smoothed estimates of volatility can be obtained.
##Example using US data data1 <- US_Inf_Data Ydep <- as.matrix(data1) littlerho=0.95 r0=1 rho=diag(r0)*littlerho p=4 n=4.1 T=nrow(Ydep) Xdep <- Ydep[p:(T-1),] if (p>1){ for(lagi in 2:p){ Xdep <- cbind(Xdep, Ydep[(p-lagi+1):(T-lagi),]) } } T=nrow(Ydep) Ydep <- as.matrix(Ydep[(p+1):T,]) T=nrow(Ydep) unos <- rep(1,T) Xdep <- cbind(unos, Xdep)
## obtain residuals bOLS <- solve(t(Xdep) %*% Xdep) %*% t(Xdep) %*% Ydep Res= Ydep- Xdep %*% bOLS Res=Res[1:T,1] b2=solve(t(Res) %*% Res/T) %*% (1-rho %*% rho)/(n-2) Res=as.matrix(Res,ncol=1)
##obtain the log likelihood LL1=lik_clo(Res,b2,n,rho) LL1[1]
First, save the constants obtained from evaluating the function lik_clo
as follows:
deg=200 niter=200 AllSt=matrix(unlist(LL1[3]), ncol=1) allctil=matrix(unlist(LL1[4]),nrow=T, ncol=(deg+1)) donde=(niter>deg)*niter+(deg>=niter)*deg alogfac=matrix(unlist(LL1[5]),nrow=(deg+1),ncol=(donde+1)) alogfac2=matrix(unlist(LL1[6]), ncol=1) alfac=matrix(unlist(LL1[7]), ncol=1)
repli is the number of replications. Then by averaging draws from the exact posterior distribution of the inverse volatilities, the smoothed estimates of the volatility can be obtained.
milaK=0 repli=5 keep0=matrix(0,nrow=repli, ncol=1) for (jj in 1:repli) { laK=DrawK0(AllSt,allctil,alogfac, alogfac2, alfac, n, rho, b2,nproc2=2) milaK=milaK+1/laK*(1/repli) keep0[jj]=mean(1/laK)/b2 } ccc=1/b2 fefo=as.vector(milaK)*ccc
##obtain moving average of squared residuals mRes=matrix(0,nrow=T,ncol=1) Res2=Res*Res bandi=5 for (iter in 1:T) { low=(iter-bandi)*(iter>bandi)+1*(iter<=bandi) up=(iter+bandi)*(iter<=(T-bandi))+T*(iter>(T-bandi)) mRes[iter]=mean(Res2[low:up]) } ##plot the results plot(fefo,type="l", col = "red", xlab="Time",ylab="Volatility Means") lines(mRes, type="l", col = "blue") legend("topright", legend = c("Stochastic Volatility", "Squared Residuals"), col = c("red", "blue"), lty = 1, cex = 0.8) ##usage of ourgeo to evaluate a 2F1 hypergeometric function ourgeo(1.5,1.9,1.2,0.7)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.