README.md

ionet

R-CMD-check DOI

The goal of ionet is to develop network functionalities specialized for the data generated from input-output tables.

Installation

You can install the development version of ionet from GitHub with:

# install.packages("devtools")
devtools::install_github("Carol-seven/ionet")

Function

btw(): betweenness centrality measure that incorporates available node-specific auxiliary information based on strongest path.

dijkstra(): implementation of the Dijkstra’s algorithm to find the shortest paths from the source node to all nodes in the given network.

Data \| Input-Output Tables

| Database | Economies | Years | Sectors | |:-------------------------------------------|:---------:|:---------:|:-------:| | the National Bureau of Statistics of China | China | 2002 | 122 | | | | 2005 | 42 | | | | 2007 | 135 | | | | 2010 | 41 | | | | 2012 | 139 | | | | 2015 | 42 | | | | 2017 | 149 | | | | 2017 | 42 | | | | 2018 | 153 | | | | 2018 | 42 | | | | 2020 | 153 | | | | 2020 | 42 | | OECD Input-Output Tables 2021 edition | China | 1995–2018 | 45 | | OECD Input-Output Tables 2021 edition | Japan | 1995–2018 | 45 |

Recommended Citation

Xiao, S., Yan, J. and Zhang, P. (2022). Incorporating auxiliary information in betweenness measure for input-output networks. Physica A: Statistical Mechanics and its Applications, 607, 128200. DOI.



Try the ionet package in your browser

Any scripts or data that you put into this service are public.

ionet documentation built on May 29, 2024, 2:29 a.m.