ipflasso: Integrative Lasso with Penalty Factors

The core of the package is cvr2.ipflasso(), an extension of glmnet to be used when the (large) set of available predictors is partitioned into several modalities which potentially differ with respect to their information content in terms of prediction. For example, in biomedical applications patient outcome such as survival time or response to therapy may have to be predicted based on, say, mRNA data, miRNA data, methylation data, CNV data, clinical data, etc. The clinical predictors are on average often much more important for outcome prediction than the mRNA data. The ipflasso method takes this problem into account by using different penalty parameters for predictors from different modalities. The ratio between the different penalty parameters can be chosen by cross-validation.

Getting started

Package details

AuthorAnne-Laure Boulesteix, Mathias Fuchs
MaintainerAnne-Laure Boulesteix <[email protected]>
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:

Try the ipflasso package in your browser

Any scripts or data that you put into this service are public.

ipflasso documentation built on May 10, 2019, 5:03 p.m.