inst/doc/ipmr-introduction.R

## ----eval = FALSE-------------------------------------------------------------
#  
#  my_ipm <- init_ipm(sim_gen = "simple", di_dd = "di", det_stoch = "det")
#  
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  my_ipm <- define_kernel(
#    proto_ipm = my_ipm,
#    name      = "P",
#  
#    # The formula describes how the vital rates generate the sub-kernel. This is
#    # equivalent to equation 3 above.
#  
#    formula   = s * g,
#  
#    # Next, we define the vital rate expressions for the P kernel (Eqs 4-6).
#    # Here, we create an expression for the inverse of the link function from
#    # our GLM for survival. In this case, it's the inverse logit (Eq 4).
#  
#    s         = 1/(1 + exp(-(s_int + s_slope * dbh_1))),
#  
#    # Growth is defined by Eqs 5-6 above. There is no inverse link function required
#    # because we use a Gaussian GLM with an identity link function (i.e. no
#    # transformation).
#  
#    g         = dnorm(dbh_2, g_mu, g_sd), # Eq 5
#    g_mu      = g_int + g_slope * dbh_1,  # Eq 6
#  
#    # The family describes the type of transition that kernel produces. See below.
#  
#    family    = "CC",
#  
#    data_list = list(
#      s_int     = 0.2,   # coef(my_surv_mod)[1]
#      s_slope   = 0.5,   # coef(my_surv_mod)[2]
#      g_int     = 0.1,   # coef(my_grow_mod)[1]
#      g_slope   = 1.033, # coef(my_grow_mod)[2]
#      g_sd      = 2.2    # sd(resid(my_grow_mod))
#    ),
#  
#    # states should be a list of the state variables that the kernel operates on
#  
#    states        = list(c('dbh')),
#    uses_par_sets = FALSE,
#    evict_cor     = TRUE,
#    evict_fun     = truncated_distributions("norm", "g")
#  )
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  # the %>% takes the result of the first operation and passes it as the first
#  # argument to the second function.
#  
#  my_ipm <- init_ipm(sim_gen = "simple", di_dd = "di", det_stoch = "det") %>%
#    define_kernel(
#      name      = "P",
#      formula   =  s * g,
#      family    = "CC",
#      s         = 1/(1 + exp(-(s_int + s_slope * dbh_1))),
#      g         = dnorm(dbh_2, g_mu, g_sd),
#      g_mu      = g_int + g_slope * dbh_1,
#  
#      data_list = list(
#        s_int     = -3,
#        s_slope   = 0.5,
#        g_int     = 0.1,
#        g_slope   = 1.033,
#        g_sd      = 2.2
#      ),
#      states        = list(c('dbh')),
#      uses_par_sets = FALSE,
#      evict_cor     = TRUE,
#      evict_fun     = truncated_distributions(fun   = "norm",
#                                              target =  "g")
#    )
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  my_ipm <- my_ipm %>%
#    define_kernel(
#      name      = "F",
#      formula   = r_r * r_s * r_d, # Eq 7
#      family    = "CC",
#  
#      # Eq 8. Again, we use the inverse logit transformation to compute pr(flowering)
#      r_r       = 1/(1 + exp(-(r_r_int + r_r_slope * dbh_1))),
#  
#      # Eq 9. We exponentiate this because of the log link in our seed production model
#      r_s       = exp(r_s_int + r_s_slope * dbh_1),
#  
#      # Eq 10. In this case, both the mean and standard deviation are constants
#  
#      r_d       = dnorm(dbh_2, r_d_mu, r_d_sd),
#      data_list = list(
#        r_r_int   = -5,   # coef(my_flower_mod)[1]
#        r_r_slope = 0.1,   # coef(my_flower_mod)[2]
#        r_s_int   = -3,   # coef(my_seed_mod)[1]
#        r_s_slope = 0.03,  # coef(my_seed_mod)[2]
#        r_d_mu    = 1.2,   # mean(my_recr_data$size_2, na.rm = TRUE)
#        r_d_sd    = 0.7    # sd(my_recr_data$size_2, na.rm = TRUE)
#      ),
#      states        = list(c('dbh')),
#      uses_par_sets = FALSE,
#      evict_cor     = TRUE,
#      evict_fun     = truncated_distributions("norm", "r_d")
#    )
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  my_ipm <- my_ipm %>%
#  
#    define_impl(
#  
#      # Create one list of lists with all the info
#  
#      list(
#  
#        # The components of the big list should be the sub-kernels. Each sub-kernel
#        # requires 3 pieces of information: the numerical integration rule, the
#        # state variable it modifies (state_start), and the state variable it
#        # generates (state_end).
#  
#        P = list(int_rule  = "midpoint",
#                 state_start = "dbh",
#                 state_end   = "dbh"),
#        F = list(int_rule  = "midpoint",
#                 state_start = "dbh",
#                 state_end   = "dbh")
#      )
#    )
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  # Alternative 1 - call make_impl_args_list() before beginning the IPM creation pipe
#  
#  impl_args <- make_impl_args_list(
#    kernel_names = c("P", "F"),
#    int_rule     = rep("midpoint", 2),
#    state_start    = rep("dbh", 2),
#    state_end      = rep("dbh", 2)
#  )
#  
#  my_ipm <- my_ipm %>%
#    define_impl(impl_args)
#  
#  my_ipm <- my_ipm %>%
#  
#    # Alternative 2, put the call to make_impl_args_list() inside of define_impl().
#  
#    define_impl(
#      make_impl_args_list(
#        kernel_names = c("P", "F"),
#        int_rule     = rep("midpoint", 2),
#        state_start    = rep("dbh", 2),
#        state_end      = rep("dbh", 2)
#      )
#    )
#  
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  my_ipm <- my_ipm %>%
#    define_domains(
#      dbh = c(        # the name of the state variable.
#        1,            # the lower bound for the domain. L from Eq 1
#        30,           # the upper bound for the domain. U from Eq 1
#        200           # the number of mesh points to use for integration
#      )
#    )
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  my_ipm <- my_ipm %>%
#    define_pop_state(n_dbh = rep(1/200, 200))
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  my_ipm <- make_ipm(my_ipm,
#                     iterations = 100)
#  
#  lambda_ipmr <- lambda(my_ipm)
#  repro_value <- left_ev(my_ipm)
#  stable_dist <- right_ev(my_ipm)
#  
#  # make_ipm_report works on either proto_ipms or made ipm objects. This
#  # requires the 'rmarkdown' package to run.
#  make_ipm_report(my_ipm$proto_ipm, title = "my_ipm_report", render_output = TRUE)
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  library(ipmr)
#  
#  data(iceplant_ex)
#  
#  # growth model
#  
#  grow_mod <- lm(log_size_next ~ log_size, data = iceplant_ex)
#  grow_sd  <- sd(resid(grow_mod))
#  
#  
#  # survival model
#  
#  surv_mod <- glm(survival ~ log_size, data = iceplant_ex, family = binomial())
#  
#  # Pr(flowering) model
#  
#  repr_mod <- glm(repro ~ log_size, data = iceplant_ex, family = binomial())
#  
#  # Number of flowers per plant model
#  
#  seed_mod <- glm(flower_n ~ log_size, data = iceplant_ex, family = poisson())
#  
#  # New recruits have no size(t), but do have size(t + 1)
#  
#  recr_data <- subset(iceplant_ex, is.na(log_size))
#  
#  recr_mu  <- mean(recr_data$log_size_next)
#  recr_sd  <- sd(recr_data$log_size_next)
#  
#  # This data set doesn't include information on germination and establishment.
#  # Thus, we'll compute the realized recruitment parameter as the number
#  # of observed recruits divided by the number of flowers produced in the prior
#  # year.
#  
#  recr_n   <- length(recr_data$log_size_next)
#  
#  flow_n   <- sum(iceplant_ex$flower_n, na.rm = TRUE)
#  
#  # Now, we bundle everything into a list as we did before. We can
#  # pass the model objects directly into the list, and do not need to extract
#  # coefficients.
#  
#  params <- list(recr_mu = recr_mu,
#                 recr_sd = recr_sd,
#                 grow_sd = grow_sd,
#                 surv_mod = surv_mod,
#                 grow_mod = grow_mod,
#                 repr_mod = repr_mod,
#                 seed_mod = seed_mod,
#                 recr_n   = recr_n,
#                 flow_n   = flow_n)
#  
#  # The lower and upper bounds for integration. Adding 20% on either end to minimize
#  # eviction. The minimum value is negative, so we multiply by 1.2, rather than 0.8.
#  # If it were positive, we would need to change that to 0.8.
#  
#  L <- min(c(iceplant_ex$log_size, iceplant_ex$log_size_next), na.rm = TRUE) * 1.2
#  U <- max(c(iceplant_ex$log_size, iceplant_ex$log_size_next), na.rm = TRUE) * 1.2
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  pred_ipm <- init_ipm(sim_gen = "simple", di_dd = "di", det_stoch = "det") %>%
#    define_kernel(
#      name          = "P",
#      family        = "CC",
#      formula       = s * g,
#  
#      # Instead of the inverse logit transformation, we use predict() here.
#      # We have to be sure that the "newdata" argument of predict is correctly specified.
#      # This means matching the names used in the model itself (log_size) to the names
#      # we give the domains (sa_1). In this case, we use "sa" (short for surface area) as
#      # the new data to generate predictions for.
#  
#      s             = predict(surv_mod,
#                              newdata = data.frame(log_size = sa_1),
#                              type    = 'response'),
#      g_mu          = predict(grow_mod,
#                              newdata = data.frame(log_size = sa_1),
#                              type    = 'response'),
#  
#      # We specify the rest of the kernel the same way.
#  
#      g             = dnorm(sa_2, g_mu, grow_sd),
#      states        = list(c("sa")),
#      data_list     = params,
#      uses_par_sets = FALSE,
#      evict_cor     = TRUE,
#      evict_fun     = truncated_distributions(fun   = "norm",
#                                              target =  "g")
#    ) %>%
#    define_kernel(
#      name          = "F",
#      family        = "CC",
#      formula       = r_p * r_s * r_d * r_r,
#  
#      # As above, we use predict(model_object). We make sure the names of the "newdata"
#      # match the names in the vital rate model formulas, and the values match the
#      # names of domains they use.
#  
#      r_p           = predict(repr_mod,
#                              newdata = data.frame(log_size = sa_1),
#                              type    = 'response'),
#      r_s           = predict(seed_mod,
#                              newdata = data.frame(log_size = sa_1),
#                              type    = 'response'),
#      r_r           = recr_n / flow_n,
#      r_d           = dnorm(sa_2, recr_mu, recr_sd),
#      states        = list(c("sa")),
#      data_list     = params,
#      uses_par_sets = FALSE,
#      evict_cor     = TRUE,
#      evict_fun     = truncated_distributions(fun   = "norm",
#                                              target =  "r_d")
#    ) %>%
#    define_impl(
#      make_impl_args_list(
#        kernel_names = c("P", "F"),
#        int_rule     = rep('midpoint', 2),
#        state_start    = rep("sa", 2),
#        state_end      = rep("sa", 2)
#      )
#    ) %>%
#    define_domains(
#      sa = c(L,
#             U,
#             100)
#    ) %>%
#    define_pop_state(n_sa = runif(100)) %>%
#    make_ipm(iterate = TRUE,
#             iterations = 200)
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  params <- list(recr_mu = recr_mu,
#                 recr_sd = recr_sd,
#                 grow_sd = grow_sd,
#                 surv_mod = use_vr_model(surv_mod),  # wrap the model
#                 grow_mod = use_vr_model(grow_mod),  # wrap the model
#                 repr_mod = use_vr_model(repr_mod),  # wrap the model
#                 seed_mod = use_vr_model(seed_mod),  # wrap the model
#                 recr_n   = recr_n,
#                 flow_n   = flow_n)
#  
#  
#  pred_ipm <- init_ipm(sim_gen = "simple", di_dd = "di", det_stoch = "det") %>%
#    define_kernel(
#      name          = "P",
#      family        = "CC",
#      formula       = s * g,
#      s             = predict(surv_mod,
#                              newdata = data.frame(log_size = sa_1),
#                              type = 'response'),
#      g_mu          = predict(grow_mod,
#                              newdata = data.frame(log_size = sa_1),
#                              type = 'response'),
#      g             = dnorm(sa_2, g_mu, grow_sd),
#      states        = list(c("sa")),
#      data_list     = params,
#      uses_par_sets = FALSE,
#      evict_cor     = TRUE,
#      evict_fun     = truncated_distributions("norm", "g")
#    ) %>%
#    define_kernel(
#      name          = "F",
#      family        = "CC",
#      formula       = r_p * r_s * r_d * r_r,
#      r_p           = predict(repr_mod,
#                              newdata = data.frame(log_size = sa_1),
#                              type = 'response'),
#      r_s           = predict(seed_mod,
#                              newdata = data.frame(log_size = sa_1),
#                              type = 'response'),
#      r_r           = recr_n / flow_n,
#      r_d           = dnorm(sa_2, recr_mu, recr_sd),
#      states        = list(c("sa")),
#      data_list     = params,
#      uses_par_sets = FALSE,
#      evict_cor     = TRUE,
#      evict_fun     = truncated_distributions("norm", "r_d")
#    )  %>%
#    define_impl(
#      make_impl_args_list(
#        kernel_names = c("P", "F"),
#        int_rule     = rep('midpoint', 2),
#        state_start    = rep("sa", 2),
#        state_end      = rep("sa", 2)
#      )
#    ) %>%
#    define_domains(
#      sa = c(L,
#             U,
#             100)
#    ) %>%
#    define_pop_state(n_sa = runif(100)) %>%
#    make_ipm(iterate = TRUE,
#             iterations = 200)
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  R_0 <- function(ipm) {
#  
#    Fm <- ipm$sub_kernels$F
#    Pm <- ipm$sub_kernels$P
#  
#    I  <- diag(nrow(Pm))
#  
#    N  <- solve(I - Pm)
#  
#    R  <- Fm %*% N
#  
#    out <- Re(eigen(R)$values[1])
#  
#    return(out)
#  
#  }
#  
#  gen_T <- function(ipm) {
#  
#    R0  <- R_0(ipm)
#    lam <- lambda(ipm) %>% as.vector()
#  
#    out <- log(R0) / log(lam)
#  
#    return(out)
#  
#  }
#  
#  R_0(pred_ipm)
#  gen_T(pred_ipm)
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  library(ipmr)
#  
#  # Define some fixed parameters
#  
#  fixed_list <- list(
#    s_int     = 1.03,   # fixef(my_surv_mod)[1] - uses fixef because we now have a model with random effects
#    s_slope   = 2.2,    # fixef(my_surv_mod)[2]
#    g_int     = 3.7,    # fixef(my_grow_mod)[1]
#    g_slope   = 0.92,   # fixef(my_grow_mod)[2]
#    sd_g      = 0.9,    # sd(resid(my_grow_mod))
#    r_r_int   = 0.09,   # coef(my_repro_mod)[1] - uses coef because there are no random effects in this model
#    r_r_slope = 0.05,   # coef(my_repro_mod)[2]
#    r_s_int   = 0.1,    # fixef(my_flower_mod)[1]
#    r_s_slope = 0.005,  # fixef(my_flower_mod)[2]
#    mu_rd     = 9,      # mean(my_recr_data$size_2, na.rm = TRUE)
#    sd_rd     = 2       # sd(my_recr_data$size_2, na.rm = TRUE)
#  )
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  # Now, simulate some random intercepts for growth (g_), survival (s_),
#  # and offspring production (r_s_). This part is for the purpose of the example.
#  
#  # First, we create vector of values that each random component can take.
#  
#  g_r_int   <- rnorm(5, 0, 0.3) # unlist(ranef(my_grow_mod)) for an lme4 output
#  s_r_int   <- rnorm(5, 0, 0.7) # unlist(ranef(my_surv_mod)) for an lme4 output
#  r_s_r_int <- rnorm(5, 0, 0.2) # unlist(ranef(my_flower_mod)) for an lme4 output
#  
#  # We'll call our hypothetical sites 1, 2, 3, 4, and 5. The "r" prefix is to
#  # remind us that these are random quantities.
#  
#  nms <- paste("r_", 1:5, sep = "")
#  
#  names(g_r_int)   <- paste('g_', nms, sep = "")
#  names(s_r_int)   <- paste('s_', nms, sep = "")
#  names(r_s_r_int) <- paste('r_s_', nms, sep = "")
#  
#  # Each set of parameters is converted to a named list. The names should match
#  # the variables referenced in each define_kernel() call.
#  
#  g_params   <- as.list(g_r_int)
#  s_params   <- as.list(s_r_int)
#  r_s_params <- as.list(r_s_r_int)
#  
#  # add them all together using c()
#  
#  all_params_list <- c(fixed_list, g_params, s_params, r_s_params)
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  my_ipm <- init_ipm(sim_gen = "simple", di_dd = "di", det_stoch = "det") %>%
#    define_kernel(
#  
#      # Our P kernels will vary from site to site, so we index it with "_site"
#  
#      name             = 'P_site',
#  
#      # Similarly, our survival and growth functions will vary from site to site
#      # so these are also indexed
#  
#      formula          = s_site * g_site,
#      family           = "CC",
#  
#      # The linear predictor for the survival function can be split out
#      # into its own expression as well. This might help keep track of things.
#      # Survival is indexed by site as well.
#  
#      s_lin_site       = s_int + s_r_site + s_slope * ht_1,
#      s_site           = 1 / (1 + exp(-s_lin_site)),
#  
#      # Again, we modify the vital rate expression to include "_site".
#  
#      g_site           = dnorm(ht_2, mean = mu_g_site, sd = sd_g),
#      mu_g_site        = g_int + g_slope * ht_1 + g_r_site,
#  
#      data_list        = all_params_list,
#      states           = list(c('ht')),
#  
#      # Here, we tell ipmr that the model has some parameter sets, and
#      # provide a list describing the values the index can take. The values in
#      # par_set_indices are substituted for "site" everywhere in the model, except
#      # for the data list. This is why we had to make sure that the names there
#      # matched the levels we supply here.
#  
#      uses_par_sets    = TRUE,
#      par_set_indices  = list(site = 1:5),
#  
#      # We must also index the variables in the eviction function
#  
#      evict_cor        = TRUE,
#      evict_fun        = truncated_distributions("norm", "g_site")
#  
#    ) %>%
#    define_kernel(
#  
#      # The F kernel also varies from site to site
#  
#      name             = "F_site",
#      formula          = r_r * r_s_site * r_d,
#      family           = "CC",
#  
#      # In this example, we didn't include a site level effect for probability
#      # of flowering, only seed production. Thus, this expression is NOT indexed.
#  
#      r_r_lin          = r_r_int + r_r_slope * ht_1,
#      r_r              = 1 / (1 + exp(- r_r_lin)),
#  
#      # We index the seed production expression with the site effect
#  
#      r_s_site         = exp(r_s_int + r_s_r_site + r_s_slope * ht_1),
#      r_d              = dnorm(ht_2, mean = mu_rd, sd = sd_rd),
#      data_list        = all_params_list,
#      states           = list(c('ht')),
#  
#      # As in the P kernel, we specify the values the index can have.
#  
#      uses_par_sets    = TRUE,
#      par_set_indices  = list(site = 1:5),
#      evict_cor        = TRUE,
#      evict_fun        = truncated_distributions("norm", "r_d")
#    ) %>%
#    define_impl(
#      make_impl_args_list(
#  
#        # The impl_args are also modified with the index
#  
#        kernel_names = c("P_site", "F_site"),
#        int_rule     = rep("midpoint", 2),
#        state_start    = rep("ht", 2),
#        state_end      = rep("ht", 2)
#      )
#    ) %>%
#    define_domains(ht = c(0.2, 40, 100)) %>%
#  
#    # We also append the suffix in define_pop_state(). THis will create a deterministic
#    # simulation for every "site"
#  
#    define_pop_state(n_ht_site = runif(100)) %>%
#    make_ipm(iterate  = TRUE,
#             iterations = 100)
#  
#  lambda(my_ipm)
#  
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  library(ipmr)
#  
#  # Define some fixed parameters
#  
#  fixed_list <- list(
#    s_int     = 1.03,   # fixef(my_surv_mod)[1] - uses fixef because we now have a model with random effects
#    s_slope   = 2.2,    # fixef(my_surv_mod)[2]
#    g_int     = 3.7,    # fixef(my_grow_mod)[1]
#    g_slope   = 0.92,   # fixef(my_grow_mod)[2]
#    sd_g      = 0.9,    # sd(resid(my_grow_mod))
#    r_r_int   = 0.09,   # coef(my_repro_mod)[1] - uses coef because there are no random effects in this model
#    r_r_slope = 0.05,   # coef(my_repro_mod)[2]
#    r_s_int   = 0.1,    # fixef(my_flower_mod)[1]
#    r_s_slope = 0.005,  # fixef(my_flower_mod)[2]
#    mu_fd     = 9,      # mean(my_recr_data$size_2, na.rm = TRUE)
#    sd_fd     = 2       # sd(my_recr_data$size_2, na.rm = TRUE)
#  )
#  

## ----eval = FALSE-------------------------------------------------------------
#  # Now, simulate some random intercepts for growth (g_), survival (s_),
#  # and offspring production (r_s_). This part is for the purpose of the example.
#  
#  # First, we create vector of values corresponding to
#  
#  g_r_int   <- rnorm(5, 0, 0.3) # unlist(ranef(my_grow_mod)) for an lme4 output
#  s_r_int   <- rnorm(5, 0, 0.7) # unlist(ranef(my_surv_mod)) for an lme4 output
#  r_s_r_int <- rnorm(5, 0, 0.2) # unlist(ranef(my_flower_mod)) for an lme4 output
#  
#  nms <- paste("r_", 1:5, sep = "")
#  
#  names(g_r_int)   <- paste('g_', nms, sep = "")
#  names(s_r_int)   <- paste('s_', nms, sep = "")
#  names(r_s_r_int) <- paste('r_s_', nms, sep = "")
#  
#  # Each set of parameters is converted to a named list. The names should match
#  # the variables referenced in each define_kernel() call.
#  
#  g_params   <- as.list(g_r_int)
#  s_params   <- as.list(s_r_int)
#  r_s_params <- as.list(r_s_r_int)
#  
#  # add them all together using c()
#  
#  all_params_list <- c(fixed_list, g_params, s_params, r_s_params)
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  inv_logit <- function(sv, int, slope) {
#    return(
#      1/(1 + exp(-(int + slope * sv)))
#    )
#  }
#  
#  # same as above, but handles the extra term from the random effect we simulated.
#  
#  inv_logit_r <- function(sv, int, slope, r_eff) {
#    return(
#      1/(1 + exp(-(int + slope * sv + r_eff)))
#    )
#  }
#  
#  pois_r <- function(sv, int, slope, r_eff) {
#    return(
#      exp(
#        int + slope * sv + r_eff
#      )
#    )
#  }
#  
#  my_funs <- list(inv_logit   = inv_logit,
#                  inv_logit_r = inv_logit_r,
#                  pois_r      = pois_r)

## ----eval = FALSE-------------------------------------------------------------
#  
#  my_ipm <- init_ipm(sim_gen    = "simple",
#                     di_dd      = "di",
#                     det_stoch  = "stoch",
#                     kern_param = "kern") %>%
#    define_kernel(
#      name             = 'P_yr',         # P becomes P_yr
#      formula          = s_yr * g_yr,    # g and s become g_yr and s_yr, respectively
#      family           = "CC",
#  
#      # Note the usage of the inv_logit_r, which we defined in the block above.
#      # it is passed to make_ipm()
#  
#      s_yr             = inv_logit_r(ht_1, s_int, s_slope, s_r_yr),
#      g_yr             = dnorm(ht_2, mean = mu_g_yr, sd = sd_g),
#      mu_g_yr          = g_int + g_slope * ht_1 + g_r_yr,
#  
#      # all_params_list contains the named parameters g_r_1, g_r_2, s_r_1, s_r_2, etc.
#      # This is the only level where the user is required to fully expand the name
#      # X par_set_indices combinations.
#  
#      data_list        = all_params_list,
#      states           = list(c('ht')),
#      uses_par_sets    = TRUE,
#      par_set_indices  = list(yr = 1:5),
#      evict_cor        = TRUE,
#  
#      # reference to g_yr in evict_fun is also updated
#  
#      evict_fun        = truncated_distributions("norm", "g_yr")
#  
#    ) %>%
#    define_kernel(
#      name             = "F_yr",             # Update the names as we did for the P kernel
#      formula          = r_r * r_s_yr * r_d,
#      family           = "CC",
#      r_r              = inv_logit(ht_1, r_r_int, r_r_slope),
#      r_s_yr           = pois_r(ht_1, r_s_int, r_s_slope, r_s_r_yr),
#      r_d              = dnorm(ht_2, mean = mu_fd, sd = sd_fd),
#      data_list        = all_params_list,
#      states           = list(c('ht')),
#      uses_par_sets    = TRUE,
#      par_set_indices = list(yr = 1:5),
#      evict_cor        = TRUE,
#      evict_fun        = truncated_distributions("norm", "r_d")
#    ) %>%
#    define_impl(
#      make_impl_args_list(
#        kernel_names = c("P_yr", "F_yr"),
#        int_rule     = rep("midpoint", 2),
#        state_start    = rep("ht", 2),
#        state_end      = rep("ht", 2)
#      )
#    ) %>%
#    define_domains(ht = c(0.2, 40, 100)) %>%
#    define_pop_state(n_ht = runif(100)) %>%
#    make_ipm(usr_funs   = my_funs,
#             kernel_seq = sample(1:5, 100, replace = TRUE),
#             iterate    = TRUE,
#             iterations = 100)
#  
#  
#  # The default for stochastic lambda is to compute mean(log(ipm$pop_state$lambda)).
#  # It also removes the first 10% of iterations to handle "burn in". The amount
#  # removed can be adjusted with the burn_in parameter.
#  
#  stoch_lambda <- lambda(my_ipm)
#  
#  # lambda(comp_method = 'pop_size', type = 'all') will compute the population
#  # growth rate for every time step as the sum(n_ht_t_1) / sum(n_ht_t).
#  
#  iteration_lambdas <- lambda(my_ipm, type_lambda = 'all')
#  
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  library(ipmr)
#  
#  # Define the fixed parameters in a list. The temperature and precipitation
#  # coefficients are defined as s_temp, s_precip, g_temp, and g_precip.
#  
#  constant_params <- list(
#    s_int     = -10,
#    s_slope   = 1.5,
#    s_precip  = 0.00001,
#    s_temp    = -0.003,
#    g_int     = 0.2,
#    g_slope   = 1.01,
#    g_sd      = 1.2,
#    g_temp    = -0.002,
#    g_precip  = 0.004,
#    r_r_int   = -3.2,
#    r_r_slope = 0.55,
#    r_s_int   = -0.4,
#    r_s_slope = 0.5,
#    r_d_mu    = 1.1,
#    r_d_sd    = 0.1
#  )
#  
#  # Now, we create a set of environmental covariates. In this example, we use
#  # a normal distribution for temperature and a Gamma for precipitation.
#  
#  env_params <- list(
#    temp_mu = 8.9,
#    temp_sd = 1.2,
#    precip_shape = 1000,
#    precip_rate  = 2
#  )
#  
#  # We define a wrapper function that samples from these distributions
#  
#  sample_env <- function(env_params) {
#  
#    # We generate one value for each covariate per iteration, and return it
#    # as a named list. We can reference the names in this list in vital rate
#    # expressions.
#  
#    temp_now   <- rnorm(1,
#                        env_params$temp_mu,
#                        env_params$temp_sd)
#  
#    precip_now <- rgamma(1,
#                     shape = env_params$precip_shape,
#                     rate  = env_params$precip_rate)
#  
#    out        <- list(temp = temp_now, precip = precip_now)
#  
#    return(out)
#  
#  }
#  
#  
#  # Again, we can define our own functions and pass them into calls to make_ipm. This
#  # isn't strictly necessary, but can make the model code more readable/less error prone.
#  
#  inv_logit <- function(lin_term) {
#    1/(1 + exp(-lin_term))
#  }
#  
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  init_pop_vec <- runif(100)
#  
#  param_resamp_model <- init_ipm(sim_gen    = "simple",
#                                 di_dd      = "di",
#                                 det_stoch  = "stoch",
#                                 kern_param = "param") %>%
#    define_kernel(
#      name    = 'P',
#      formula = s * g,
#      family  = 'CC',
#  
#      # Parameters created by define_env_state() can be referenced by name just like
#      # any other parameter in the model.
#  
#      g_mu    = g_int + g_slope * surf_area_1 + g_temp * temp + g_precip * precip,
#      s_lin_p = s_int + s_slope * surf_area_1 + s_temp * temp + s_precip * precip,
#      s       = inv_logit(s_lin_p),
#      g       = dnorm(surf_area_2, g_mu, g_sd),
#  
#  
#      data_list = constant_params,
#      states    = list(c('surf_area')),
#      uses_par_sets = FALSE,
#      evict_cor     = TRUE,
#      evict_fun     = truncated_distributions("norm", "g")
#    ) %>%
#    define_kernel(
#      name          = 'F',
#      formula       = r_r * r_s * r_d,
#      family        = 'CC',
#      r_r_lin_p     = r_r_int + r_r_slope * surf_area_1,
#      r_r           = inv_logit(r_r_lin_p),
#      r_s           = exp(r_s_int + r_s_slope * surf_area_1),
#      r_d           = dnorm(surf_area_2, r_d_mu, r_d_sd),
#      data_list     = constant_params,
#      states        = list(c('surf_area')),
#      uses_par_sets = FALSE,
#      evict_cor     = TRUE,
#      evict_fun     = truncated_distributions("norm", "r_d")
#    ) %>%
#    define_impl(
#      make_impl_args_list(
#        kernel_names = c("P", "F"),
#        int_rule     = rep('midpoint', 2),
#        state_start    = rep('surf_area', 2),
#        state_end      = rep('surf_area', 2)
#      )
#    ) %>%
#      define_domains(surf_area = c(0, 10, 100))
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  param_resamp_model <- param_resamp_model %>%
#  
#    define_env_state(
#      env_covs   = sample_env(env_params),
#      data_list  = list(env_params = env_params,
#                        sample_env = sample_env)
#    ) %>%
#    define_pop_state(
#      pop_vectors = list(
#        n_surf_area = init_pop_vec
#      )
#    ) %>%
#    make_ipm(usr_funs   = list(inv_logit  = inv_logit),
#             iterate    = TRUE,
#             iterations = 10,
#             return_sub_kernels = TRUE)
#  
#  # By default, lambda computes stochastic lambda with stochastic models
#  
#  lambda(param_resamp_model)
#  
#  # We can get lambdas for each time step by adding type_lambda = "all"
#  
#  lambda(param_resamp_model, type_lambda = 'all')
#  
#  # If we want to see the actual draws that were used at each step of the
#  # model iteration, we can access these using the output's $env_seq slot.
#  
#  param_resamp_model$env_seq
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  param_resamp_model <- init_ipm(sim_gen    = "simple",
#                                 di_dd      = "di",
#                                 det_stoch  = "stoch",
#                                 kern_param = "param") %>%
#    define_kernel(
#      name    = 'P',
#      formula = s * g,
#      family  = 'CC',
#  
#      # Parameters created by define_env_state() can be referenced by name just like
#      # any other parameter in the model.
#  
#      g_mu    = g_int + g_slope * surf_area_1 + g_temp * temp + g_precip * precip,
#      s_lin_p = s_int + s_slope * surf_area_1 + s_temp * temp + s_precip * precip,
#      s       = inv_logit(s_lin_p),
#      g       = dnorm(surf_area_2, g_mu, g_sd),
#  
#  
#      data_list = constant_params,
#      states    = list(c('surf_area')),
#      uses_par_sets = FALSE,
#      evict_cor     = TRUE,
#      evict_fun     = truncated_distributions("norm", "g")
#    ) %>%
#    define_kernel(
#      name          = 'F',
#      formula       = r_r * r_s * r_d,
#      family        = 'CC',
#      r_r_lin_p     = r_r_int + r_r_slope * surf_area_1,
#      r_r           = inv_logit(r_r_lin_p),
#      r_s           = exp(r_s_int + r_s_slope * surf_area_1),
#      r_d           = dnorm(surf_area_2, r_d_mu, r_d_sd),
#      data_list     = constant_params,
#      states        = list(c('surf_area')),
#      uses_par_sets = FALSE,
#      evict_cor     = TRUE,
#      evict_fun     = truncated_distributions("norm", "r_d")
#    ) %>%
#    define_impl(
#      make_impl_args_list(
#        kernel_names = c("P", "F"),
#        int_rule     = rep('midpoint', 2),
#        state_start    = rep('surf_area', 2),
#        state_end      = rep('surf_area', 2)
#      )
#    ) %>%
#      define_domains(surf_area = c(0, 10, 100))
#  
#  
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  env_states <- data.frame(precip = rgamma(10, shape = 1000, rate = 2),
#                           temp   = rnorm(10, mean = 8.9, sd = 1.2))
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  sample_env <- function(env_states, iteration) {
#  
#    out <- as.list(env_states[iteration, ])
#    names(out) <- names(env_states)
#  
#    return(out)
#  
#  }
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  param_resamp_model <- param_resamp_model %>%
#    define_env_state(env_params = sample_env(env_states,
#                                             iteration = t), # "t" indexes the current model iteration
#                     data_list = list(
#                       env_states = env_states,
#                       sample_env = sample_env
#                     )) %>%
#    define_pop_state(
#      pop_vectors = list(
#        n_surf_area = init_pop_vec
#      )
#    ) %>%
#    make_ipm(usr_funs   = list(inv_logit  = inv_logit),
#             iterate    = TRUE,
#             iterations = 10)

## ----eval = FALSE-------------------------------------------------------------
#  
#  
#  param_resamp_model <- init_ipm(sim_gen    = "simple",
#                                 di_dd      = "di",
#                                 det_stoch  = "stoch",
#                                 kern_param = "param") %>%
#    define_kernel(
#      name    = 'P',
#      formula = s * g,
#      family  = 'CC',
#  
#      # Parameters created by define_env_state() can be referenced by name just like
#      # any other parameter in the model.
#  
#      g_mu    = g_int + g_slope * surf_area_1 + g_temp * temp + g_precip * precip,
#      s_lin_p = s_int + s_slope * surf_area_1 + s_temp * temp + s_precip * precip,
#      s       = inv_logit(s_lin_p),
#      g       = dnorm(surf_area_2, g_mu, g_sd),
#  
#  
#      data_list = constant_params,
#      states    = list(c('surf_area')),
#      uses_par_sets = FALSE,
#      evict_cor     = TRUE,
#      evict_fun     = truncated_distributions("norm", "g")
#    ) %>%
#    define_kernel(
#      name          = 'F',
#      formula       = r_r * r_s * r_d,
#      family        = 'CC',
#      r_r_lin_p     = r_r_int + r_r_slope * surf_area_1,
#      r_r           = inv_logit(r_r_lin_p),
#      r_s           = exp(r_s_int + r_s_slope * surf_area_1),
#      r_d           = dnorm(surf_area_2, r_d_mu, r_d_sd),
#      data_list     = constant_params,
#      states        = list(c('surf_area')),
#      uses_par_sets = FALSE,
#      evict_cor     = TRUE,
#      evict_fun     = truncated_distributions("norm", "r_d")
#    ) %>%
#    define_impl(
#      make_impl_args_list(
#        kernel_names = c("P", "F"),
#        int_rule     = rep('midpoint', 2),
#        state_start    = rep('surf_area', 2),
#        state_end      = rep('surf_area', 2)
#      )
#    ) %>%
#      define_domains(surf_area = c(0, 10, 100))
#  
#  
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  env_sampler <- function(time, init_temp = 10, init_precip = 1500) {
#  
#    t_est <- init_temp + 0.2 * time + rnorm(1, mean = 0, sd = 0.2)
#  
#    p_est <- init_precip + -3.3 * time + rnorm(1, mean = 0, sd = 100)
#  
#    if(p_est <= 0) p_est <- 1
#  
#    out <- list(temp   = t_est,
#                precip = p_est)
#  
#    return(out)
#  
#  }
#  
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  param_resamp_ipm <- param_resamp_model %>%
#    define_env_state(
#      env_params = env_sampler(time = t, init_temp = 10, init_precip = 1500),
#      data_list  = list()
#    ) %>%
#    define_pop_state(
#      n_surf_area = init_pop_vec
#    ) %>%
#    make_ipm(
#      iterations = 100,
#      usr_funs = list(env_sampler = env_sampler,
#                      inv_logit = inv_logit)
#    )
#  
#  lambda(param_resamp_ipm)
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  library(ipmr)
#  
#  data(iceplant_ex)
#  
#  grow_mod <- lm(log_size_next ~ log_size, data = iceplant_ex)
#  grow_sd  <- sd(resid(grow_mod))
#  
#  surv_mod <- glm(survival ~ log_size, data = iceplant_ex, family = binomial())
#  repr_mod <- glm(repro ~ log_size, data = iceplant_ex, family = binomial())
#  seed_mod <- glm(flower_n ~ log_size, data = iceplant_ex, family = poisson())
#  recr_data <- subset(iceplant_ex, is.na(log_size))
#  
#  recr_mu  <- mean(recr_data$log_size_next)
#  recr_sd  <- sd(recr_data$log_size_next)
#  recr_n   <- length(recr_data$log_size_next)
#  flow_n   <- sum(iceplant_ex$flower_n, na.rm = TRUE)
#  
#  params <- list(recr_mu = recr_mu,
#                 recr_sd = recr_sd,
#                 grow_sd = grow_sd,
#                 surv_mod = surv_mod,
#                 grow_mod = grow_mod,
#                 repr_mod = repr_mod,
#                 seed_mod = seed_mod,
#                 recr_n   = recr_n,
#                 flow_n   = flow_n)
#  
#  L <- min(c(iceplant_ex$log_size, iceplant_ex$log_size_next), na.rm = TRUE) * 1.2
#  U <- max(c(iceplant_ex$log_size, iceplant_ex$log_size_next), na.rm = TRUE) * 1.2
#  
#  obs_ipm <- init_ipm(sim_gen    = "simple",
#                      di_dd      = "di",
#                      det_stoch  = "det") %>%
#    define_kernel(
#      name          = "P",
#      family        = "CC",
#      formula       = s * g,
#  
#      # Instead of the inverse logit transformation, we use predict() here.
#      # We have to be sure that the "newdata" argument of predict is correctly specified.
#      # This means matching the names used in the model itself (log_size) to the names
#      # we give the domains. In this case, we use "sa" (short for surface area) as
#      # the new data to generate predictions for.
#  
#      s             = predict(surv_mod,
#                              newdata = data.frame(log_size = sa_1),
#                              type    = 'response'),
#      g_mu          = predict(grow_mod,
#                              newdata = data.frame(log_size = sa_1),
#                              type    = 'response'),
#  
#      # We specify the rest of the kernel the same way.
#  
#      g             = dnorm(sa_2, g_mu, grow_sd),
#      states        = list(c("sa")),
#      data_list     = params,
#      uses_par_sets = FALSE,
#      evict_cor     = TRUE,
#      evict_fun     = truncated_distributions(fun   = "norm",
#                                              target =  "g")
#    ) %>%
#    define_kernel(
#      name          = "F",
#      family        = "CC",
#      formula       = r_p * r_s * r_d * r_r,
#  
#      # As above, we use predict(model_object). We make sure the names of the "newdata"
#      # match the names in the vital rate model formulas, and the values match the
#      # names of domains they use.
#  
#      r_p           = predict(repr_mod,
#                              newdata = data.frame(log_size = sa_1),
#                              type    = 'response'),
#      r_s           = predict(seed_mod,
#                              newdata = data.frame(log_size = sa_1),
#                              type    = 'response'),
#      r_r           = recr_n / flow_n,
#      r_d           = dnorm(sa_2, recr_mu, recr_sd),
#      states        = list(c("sa")),
#      data_list     = params,
#      uses_par_sets = FALSE,
#      evict_cor     = TRUE,
#      evict_fun     = truncated_distributions(fun   = "norm",
#                                              target =  "r_d")
#    ) %>%
#    define_impl(
#      make_impl_args_list(
#        kernel_names = c("P", "F"),
#        int_rule     = rep('midpoint', 2),
#        state_start    = rep("sa", 2),
#        state_end      = rep("sa", 2)
#      )
#    ) %>%
#    define_domains(
#      sa = c(L,
#             U,
#             100)
#    ) %>%
#    define_pop_state(n_sa = runif(100)) %>%
#    make_ipm(iterate = TRUE,
#             iterations = 100)
#  
#  lambda_obs <- lambda(obs_ipm)
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  all_lambdas <- numeric(50L)
#  
#  recr_data <- subset(iceplant_ex, is.na(log_size))
#  
#  adults <- subset(iceplant_ex, !is.na(log_size))
#  
#  use_proto <- obs_ipm$proto_ipm
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  
#  for(i in 1:50) {
#  
#    sample_ind <- seq(1, nrow(adults), by = 1)
#  
#    boot_ind   <- sample(sample_ind, size = nrow(adults), replace = TRUE)
#  
#    boot_data  <- rbind(adults[boot_ind, ],
#                        recr_data)
#  
#    grow_mod <- lm(log_size_next ~ log_size, data = boot_data)
#    grow_sd  <- sd(resid(grow_mod))
#  
#    surv_mod <- glm(survival ~ log_size, data = boot_data, family = binomial())
#    repr_mod <- glm(repro ~ log_size, data = boot_data, family = binomial())
#    seed_mod <- glm(flower_n ~ log_size, data = boot_data, family = poisson())
#  
#    recr_mu  <- mean(recr_data$log_size_next)
#    recr_sd  <- sd(recr_data$log_size_next)
#    recr_n   <- length(recr_data$log_size_next)
#    flow_n   <- sum(boot_data$flower_n, na.rm = TRUE)
#  
#    params <- list(recr_mu = recr_mu,
#                   recr_sd = recr_sd,
#                   grow_sd = grow_sd,
#                   surv_mod = surv_mod,
#                   grow_mod = grow_mod,
#                   repr_mod = repr_mod,
#                   seed_mod = seed_mod,
#                   recr_n   = recr_n,
#                   flow_n   = flow_n)
#  
#    # Insert the new vital rate models into the proto_ipm, then rebuild the IPM.
#  
#    parameters(use_proto) <- params
#  
#    boot_ipm <- use_proto %>%
#      make_ipm(iterate = TRUE,
#               iterations = 100)
#  
#    all_lambdas[i] <- lambda(boot_ipm)
#  
#  }
#  
#  # Plot the results
#  
#  hist(all_lambdas)
#  abline(v = lambda_obs, col = 'red', lwd = 2, lty = 2)
#  

## ----eval = FALSE-------------------------------------------------------------
#  
#  browseVignettes("ipmr")
#  

Try the ipmr package in your browser

Any scripts or data that you put into this service are public.

ipmr documentation built on Feb. 16, 2023, 10:04 p.m.