Nothing
#' Testing of cheese data set
#'
#' @format A data frame with 30 rows and 5 columns
#' \describe{
#' \item{Taste}{A measure of taste quality of cheese}
#' \item{AceticAcid}{Concentration of Acetic acid}
#' \item{H2S}{Concentration of hydrogen sulphide}
#' \item{LacticAcid}{Concentration lactic acid}
#' \item{logH2S}{Logarithm of H2S}
#' }
#' @examples
#' data(cheese)
#' summary(cheese)
#' pairs(cheese)
#' cheese.lm <- lm(Taste ~ AceticAcid + LacticAcid + logH2S, data=cheese, subset=2:30)
#' # Check the diagnostics
#' plot(cheese.lm$fit, cheese.lm$res, xlab="Fitted values", ylab = "Residuals")
#' abline(h=0)
#' # Should be a random scatter
#' qqnorm(cheese.lm$res, col=2)
#' qqline(cheese.lm$res, col="blue")
#' summary(cheese.lm)
#' cheese.lm2 <- lm(Taste ~ LacticAcid + logH2S, data=cheese)
#' # Check the diagnostics
#' plot(cheese.lm2$fit, cheese.lm2$res, xlab="Fitted values", ylab = "Residuals")
#' abline(h=0)
#' qqnorm(cheese.lm2$res, col=2)
#' qqline(cheese.lm2$res, col="blue")
#' summary(cheese.lm2)
#' # How can we predict?
#' newcheese <- data.frame(AceticAcid = 300, LacticAcid = 1.5, logH2S=4)
#' cheese.pred <- predict(cheese.lm2, newdata=newcheese, se.fit=TRUE)
#' cheese.pred
#' # Obtain confidence interval
#' cheese.pred$fit + c(-1, 1) * qt(0.975, df=27) * cheese.pred$se.fit
#' # Using R to predict
#' cheese.pred.conf.limits <- predict(cheese.lm2, newdata=newcheese, interval="confidence")
#' cheese.pred.conf.limits
#' # How to find prediction interval
#' cheese.pred.pred.limits <- predict(cheese.lm2, newdata=newcheese, interval="prediction")
#' cheese.pred.pred.limits
"cheese"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.