Nothing
#'Body weight and length of possums (tree living furry animals who are mostly
#' nocturnal (marsupial) caught in 7 different regions of Australia.
#'
#' @source \insertCite{Lindenmayer1995;textual}{ipsRdbs}.
#' @format A data frame with 101 rows and 3 columns:
#' \describe{
#' \item{Body_Weight}{Body weight in kilogram}
#' \item{Length}{Body length of the possum}
#' \item{Location}{7 different regions of Australia: (1) Western
#' Austrailia (W.A), (2) South Australia (S.A), (3) Northern Territory
#' (N.T), (4) Queensland (QuL), (5) New South Wales (NSW),
#' (6) Victoria (Vic) and (7) Tasmania (Tas). }
#' }
#' @references
#' \insertAllCited{}
#' @examples
#' head(possum)
#' dim(possum)
#' summary(possum)
#' ## Code lines used in the book
#' ## Create a new data set
#' poss <- possum
#' poss$region <- factor(poss$Location)
#' levels(poss$region) <- c("W.A", "S.A", "N.T", "QuL", "NSW", "Vic", "Tas")
#' colnames(poss)<-c("y","z","Location", "x")
#' head(poss)
#' # Draw side by side boxplots
#' boxplot(y~x, data=poss, col=2:8, xlab="region", ylab="Weight")
#' # Obtain scatter plot
#' # Start with a skeleton plot
#' plot(poss$z, poss$y, type="n", xlab="Length", ylab="Weight")
#' # Add points for the seven regions
#' for (i in 1:7) {
#' points(poss$z[poss$Location==i],poss$y[poss$Location==i],type="p", pch=as.character(i), col=i)
#' }
#' ## Add legends
#' legend(x=76, y=4.2, legend=paste(as.character(1:7), levels(poss$x)), lty=1:7, col=1:7)
#' # Start modelling
#' #Fit the model with interaction.
#' poss.lm1<-lm(y~z+x+z:x,data=poss)
#' summary(poss.lm1)
#' plot(poss$z, poss$y,type="n", xlab="Length", ylab="Weight")
#' for (i in 1:7) {
#' lines(poss$z[poss$Location==i],poss.lm1$fit[poss$Location==i],type="l",
#' lty=i, col=i, lwd=1.8)
#' points(poss$z[poss$Location==i],poss$y[poss$Location==i],type="p",
#' pch=as.character(i), col=i)
#' }
#' poss.lm0 <- lm(y~z,data=poss)
#' abline(poss.lm0, lwd=3, col=9)
#' # Has drawn the seven parallel regression lines
#' legend(x=76, y=4.2, legend=paste(as.character(1:7), levels(poss$x)),
#' lty=1:7, col=1:7)
#'
#' n <- length(possum$Body_Weight)
#' # Wrong model since Location is not a numeric covariate
#' wrong.lm <- lm(Body_Weight~Location, data=possum)
#' summary(wrong.lm)
#'
#' nis <- table(possum$Location)
#' meanwts <- tapply(possum$Body_Weight, possum$Location, mean)
#' varwts <- tapply(possum$Body_Weight, possum$Location, var)
#' datasums <- data.frame(nis=nis, mean=meanwts, var=varwts)
#' datasums <- data.frame(nis=nis, mean=meanwts, var=varwts)
#' modelss <- sum(datasums[,2] * (meanwts - mean(meanwts))^2)
#' residss <- sum( (datasums[,2] - 1) * varwts)
#'
#' fvalue <- (modelss/6) / (residss/94)
#' fcritical <- qf(0.95, df1= 6, df2=94)
#' x <- seq(from=0, to=12, length=200)
#' y <- df(x, df1=6, df2=94)
#' plot(x, y, type="l", xlab="", ylab="Density of F(6, 94)", col=4)
#' abline(v=fcritical, lty=3, col=3)
#' abline(v=fvalue, lty=2, col=2)
#' pvalue <- 1-pf(fvalue, df1=6, df2=94)
#'
#' ### Doing the above in R
#' # Convert the Location column to a factor
#' possum$Location <- as.factor(possum$Location)
#' summary(possum) # Now Location is a factor
#'
#' # Put the identifiability constraint:
#' options(contrasts=c("contr.treatment", "contr.poly"))
#' colnames(possum) <- c("y", "z", "x")
#' # Fit model M1
#' possum.lm1 <- lm(y~x, data=possum)
#' summary(possum.lm1)
#' anova(possum.lm1)
#' possum.lm2 <- lm(y~z, data=poss)
#' summary(possum.lm2)
#' anova(possum.lm2)
#' # Include both location and length but no interaction
#' possum.lm3 <- lm(y~x+z, data=poss)
#' summary(possum.lm3)
#' anova(possum.lm3)
#' # Include interaction effect
#' possum.lm4 <- lm(y~x+z+x:z, data=poss)
#' summary(possum.lm4)
#' anova(possum.lm4)
#' anova(possum.lm2, possum.lm3)
#' #Check the diagnostics for M3
#' plot(possum.lm3$fit, possum.lm3$res,xlab="Fitted values",ylab="Residuals",
#' main="Anscombe plot")
#' abline(h=0)
#' qqnorm(possum.lm3$res,main="Normal probability plot", col=2)
#' qqline(possum.lm3$res, col="blue")
#'
"possum"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.