inst/doc/hypothesis_templates.R

## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  # tidy = TRUE,
  # tidy.opts=list(arrow=TRUE,width.cutoff = 50),
  eval=F
)

## -----------------------------------------------------------------------------
#  h_1PLvs2PL <- list(res = function(altpars, nullpars = NULL) {
#  
#      n.items <- length(altpars[[1]])
#  
#      re <- list(n.items = n.items, itemtype = "2PL",
#          Amat = c(1, 0, -1, 0, rep(0, (n.items - 1) *
#              2)) |>
#              (function(x) rep(x, n.items - 2))() |>
#              c(1, 0, -1, 0) |>
#              matrix(ncol = n.items * 2, byrow = TRUE),
#          cvec = 0, model = mirt::mirt.model(paste("F = 1-",
#              n.items, "
#                             CONSTRAIN = (1-",
#              n.items, ", a1)")))
#      return(re)
#  }, unres = function(altpars) {
#  
#      re <- list(parsets = altpars, model = 1, itemtype = "2PL",
#          longpars = pars.long(pars = altpars, itemtype = "2PL"))
#  
#      return(re)
#  }, maximizeL = function(hyp) {
#      # Hypothesis-specific algorithm to find the
#      # maximum likelihood restricted parameter set
#  
#  
#      maxlpreload <- function(pars, funs) {
#          # returns the density for each response
#          # pattern under the model parameters pars
#  
#          patterns <- as.matrix(expand.grid(lapply(seq_len(length(pars$a)),
#              function(x) c(0, 1))))
#  
#          pre <- c()
#          for (i in seq_len(nrow(patterns))) {
#              pre[i] <- funs$g(patterns[i, ], pars)
#          }
#  
#          return(pre)
#      }
#  
#  
#      maxl <- function(x, pars, pre, funs) {
#          # calculates the likelihood of parameters
#          # x given model 'pars'
#  
#          patterns <- as.matrix(expand.grid(lapply(seq_len(length(pars$a)),
#              function(x) c(0, 1))))
#          x <- list(a = rep(x[1], length(pars$a)), d = x[2:length(x)])
#  
#          res <- c()
#          for (i in seq_len(nrow(patterns))) {
#              px <- pre[i]
#              qx <- funs$g(patterns[i, ], x)
#              res[i] <- {
#                  px * log(qx)
#              }
#          }
#          re <- -sum(res)
#      }
#      resmod <- hyp$resmod
#      unresmod <- hyp$unresmod
#  
#      pars <- unresmod$parsets
#  
#      funs <- load.functions(unresmod$itemtype)
#  
#      startval <- c(mean(pars$a), as.numeric(pars$d))
#  
#      maxlpre <- maxlpreload(pars, funs)
#      optpar <- stats::optim(startval, function(x) {
#          maxl(x, pars, maxlpre, funs)
#      }, method = "BFGS")
#      re <- pars
#      re$a <- rep(optpar$par[1], length(pars$a))
#      re$d <- optpar$par[2:length(optpar$par)]
#  
#      return(re)
#  })

## -----------------------------------------------------------------------------
#  h_DIF2PL <- list(res = function(altpars, nullpars = NULL) {
#  
#      n.items <- length(altpars[[1]][[1]])
#  
#      reA <- altpars[[1]]
#      reB <- altpars[[2]]
#  
#      hyp_a <- which(reA$a != reB$a)
#      hyp_d <- which(reA$d != reB$d)
#  
#      Amat <- matrix(0, nrow = length(c(hyp_a, hyp_d)),
#          ncol = n.items * 2)
#  
#      i <- 1
#      for (j in hyp_a) {
#          Amat[i, j * 2 - 1] <- 1
#          i <- i + 1
#      }
#      for (j in hyp_d) {
#          Amat[i, j * 2] <- 1
#          i <- i + 1
#      }
#      Amat <- cbind(Amat, -Amat)
#  
#      delcols <- (colSums(Amat) == 0) & (1:(n.items *
#          2 * 2)) > 2 * n.items
#      relpars <- colSums(Amat[, 1:(2 * n.items)]) ==
#          1
#      Amat <- Amat[, !delcols]
#  
#      re <- list(n.items = n.items, itemtype = "2PL",
#          Amat = Amat, cvec = 0, model = mirt::mirt.model(paste("F = 1-",
#              n.items, "
#                         CONSTRAINB = (1-",
#              n.items, ", d), (1-", n.items, ", a1)")),
#          multigroup = TRUE, delcols = delcols, relpars = relpars)
#  
#      return(re)
#  }, unres = function(altpars) {
#  
#      n.items <- length(altpars[[1]][[1]])
#  
#      reA <- altpars[[1]]
#      reB <- altpars[[2]]
#  
#      reA$itemtype <- reB$itemtype <- "2PL"
#  
#      reA$longpars <- pars.long(pars = reA, itemtype = "2PL")
#      reB$longpars <- pars.long(pars = reB, itemtype = "2PL")
#  
#      constrain_a <- which(reA$a == reB$a)
#      constrain_d <- which(reA$d == reB$d)
#  
#      hyp_a <- which(reA$a != reB$a)
#      hyp_d <- which(reA$d != reB$d)
#  
#      Amat <- matrix(0, nrow = length(c(hyp_a, hyp_d)),
#          ncol = n.items * 2)
#  
#      i <- 1
#      for (j in hyp_a) {
#          Amat[i, j * 2 - 1] <- 1
#          i <- i + 1
#      }
#      for (j in hyp_d) {
#          Amat[i, j * 2] <- 1
#          i <- i + 1
#      }
#      Amat <- cbind(Amat, -Amat)
#  
#      delcols <- (colSums(Amat) == 0) & (1:(n.items *
#          2 * 2)) > 2 * n.items
#  
#      longpars <- c(reA$longpars, reB$longpars)[!delcols]
#  
#      re <- list(parsets = list(reA, reB), model = mirt::mirt.model(paste("F = 1-",
#          n.items, "
#                       CONSTRAINB = (",
#          paste(constrain_d, collapse = ","), ", d), (",
#          paste(constrain_a, collapse = ","), ", a1)")),
#          longpars = longpars, multigroup = TRUE, itemtype = "2PL",
#          delcols = delcols)
#  
#      return(re)
#  }, maximizeL = function(hyp) {
#      # Hypothesis-specific algorithm to find the
#      # maximum likelihood restricted parameter set
#      # L Optimizer
#  
#      maxl <- function(x, pars1, pars2, i) {
#  
#          px1 <- function(th) {
#              funs$f(th, pars1$a[i], pars1$d[i], 1)
#          }
#          px2 <- function(th) {
#              funs$f(th, pars2$a[i], pars2$d[i], 1)
#          }
#          qx <- function(th) {
#              funs$f(th, x[1], x[2], 1)
#          }
#          kl <- function(th) {
#              px1(th) * log(qx(th)) + (1 - px1(th)) *
#                  log(1 - qx(th)) + px2(th) * log(qx(th)) +
#                  (1 - px2(th)) * log((1 - qx(th)))
#          }
#          re <- -spatstat.random::gauss.hermite(kl, order = 20)
#      }
#  
#      resmod <- hyp$resmod
#      unresmod <- hyp$unresmod
#  
#      pars <- unresmod$parsets
#  
#      pars1 <- pars[[1]]
#      pars2 <- pars[[2]]
#  
#      funs <- load.functions(pars1$itemtype)
#      re <- pars1
#  
#      for (i in seq_len(length(pars1$a))) {
#          startval <- c(re$a[i], re$d[i])
#          optpar <- stats::optim(startval, function(x) {
#              maxl(x, pars1, pars2, i)
#          }, method = "BFGS")
#          re$a[i] <- optpar$par[1]
#          re$d[i] <- optpar$par[2]
#      }
#      return(re)
#  })

## -----------------------------------------------------------------------------
#  h_PCMvsGPCM <- list(res = function(altpars, nullpars = NULL) {
#  
#      n.items <- length(altpars[[1]])
#      nkat <- ncol(altpars$d)
#  
#      re <- list(n.items = n.items, itemtype = "gpcm",
#          Amat = c(1, rep(0, nkat - 1), -1, rep(0, nkat -
#              1), rep(0, (n.items - 1) * nkat)) |>
#              (function(x) rep(x, n.items - 2))() |>
#              c(1, rep(0, nkat - 1), -1, rep(0, nkat -
#                  1)) |>
#              matrix(ncol = n.items * nkat, byrow = TRUE),
#          cvec = 0, model = mirt::mirt.model(paste("F = 1-",
#              n.items, "
#                         CONSTRAIN = (1-",
#              n.items, ", a1)")))
#      return(re)
#  }, unres = function(altpars) {
#  
#      re <- list(parsets = altpars, model = 1, itemtype = "gpcm",
#          longpars = pars.long(pars = altpars, itemtype = "gpcm"))
#  
#      return(re)
#  }, maximizeL = function(hyp) {
#      # Hypothesis-specific algorithm to find the
#      # maximum likelihood restricted parameter set
#  
#  
#      maxlpreload <- function(pars) {
#          # returns the density for each response
#          # pattern under the model parameters pars
#  
#  
#          n.items <- length(pars$a)
#          n.kat <- max(ncol(pars$d), 2)
#          patterns <- as.matrix(expand.grid(lapply(1:n.items,
#              function(x) 0:(n.kat - 1))))
#  
#          pre <- c()
#          for (i in seq_len(nrow(patterns))) {
#              pre[i] <- funs$g(patterns[i, ], pars)
#          }
#  
#          return(pre)
#      }
#  
#      maxl <- function(x, pars, pre) {
#          # calculates the likelihood of parameters
#          # x given model 'pars'
#          n.items <- length(pars$a)
#          n.kat <- max(ncol(pars$d), 2)
#          patterns <- as.matrix(expand.grid(lapply(1:n.items,
#              function(x) 0:(n.kat - 1))))
#          x <- list(a = rep(x[1], n.items), d = matrix(c(rep(0,
#              n.items), x[2:length(x)]), ncol = ncol(pars$d)))
#  
#          res <- c()
#          for (i in seq_len(nrow(patterns))) {
#              px <- pre[i]
#              qx <- funs$g(patterns[i, ], x)
#              res[i] <- {
#                  px * log(qx)
#              }
#          }
#          re <- -sum(res)
#      }
#  
#      resmod <- hyp$resmod
#      unresmod <- hyp$unresmod
#  
#      pars <- unresmod$parsets
#      funs <- load.functions(unresmod$itemtype)
#  
#      n.kat <- max(ncol(pars$d), 2)
#      n.items <- length(pars$a)
#      startval <- c(mean(pars$a), as.numeric(pars$d[,
#          2:n.kat]))
#  
#  
#      maxlpre <- maxlpreload(pars)
#  
#      optpar <- stats::optim(startval, function(x) {
#          maxl(x, pars, maxlpre)
#      }, method = "BFGS")
#      re <- pars
#      re$a <- rep(optpar$par[1], n.items)
#      re$d <- matrix(c(rep(0, n.items), optpar$par[2:length(optpar$par)]),
#          ncol = ncol(pars$d))
#  
#      return(re)
#  })

## -----------------------------------------------------------------------------
#  h_2PL_basic <- list(res = function(altpars, nullpars = NULL) {
#  
#      n.items <- length(altpars[[1]])
#  
#      re <- list(n.items = n.items, itemtype = "2PL",
#          Amat = c(0, 1, rep(0, (n.items - 1) * 2)) |>
#              (function(x) matrix(x, ncol = n.items *
#                  2, byrow = TRUE))(), cvec = 0, model = mirt::mirt.model(paste("F = 1-",
#              n.items, "
#                             FIXED = (1, d)
#                             START = (1,d,0)")))
#      return(re)
#  }, unres = function(altpars) {
#  
#      re <- list(parsets = altpars, model = 1, itemtype = "2PL",
#          longpars = pars.long(pars = altpars, itemtype = "2PL"))
#  
#      return(re)
#  }, maximizeL = function(hyp) {
#      # Hypothesis-specific algorithm to find the
#      # maximum likelihood restricted parameter set
#  
#  
#      maxlpreload <- function(pars) {
#          # returns the density for each response
#          # pattern under the model parameters pars
#  
#          patterns <- as.matrix(expand.grid(lapply(seq_len(length(pars$a)),
#              function(x) c(0, 1))))
#  
#          pre <- c()
#          for (i in seq_len(nrow(patterns))) {
#              pre[i] <- funs$g(patterns[i, ], pars)
#          }
#  
#          return(pre)
#      }
#  
#  
#      maxl <- function(x, pars, pre) {
#          # calculates the likelihood of parameters
#          # x given model 'pars'
#          patterns <- as.matrix(expand.grid(lapply(seq_len(length(pars$a)),
#              function(x) c(0, 1))))
#  
#          x <- list(a = c(x, pars$a[2:length(pars$a)]),
#              d = c(0, pars$d[2:length(pars$d)]))
#  
#          res <- c()
#          for (i in seq_len(nrow(patterns))) {
#              px <- pre[i]
#              qx <- funs$g(patterns[i, ], x)
#              res[i] <- {
#                  px * log(qx)
#              }
#          }
#          re <- -sum(res)
#      }
#      resmod <- hyp$resmod
#      unresmod <- hyp$unresmod
#  
#      pars <- unresmod$parsets
#      funs <- load.functions(unresmod$itemtype)
#  
#      startval <- pars$a[1]
#  
#      maxlpre <- maxlpreload(pars)
#  
#      optpar <- stats::optim(startval, function(x) {
#          maxl(x, pars, maxlpre)
#      }, method = "BFGS")
#      re <- pars
#      re$a <- c(optpar$par[1], pars$a[2:length(pars$a)])
#      re$d <- c(0, pars$d[2:length(pars$d)])
#  
#      return(re)
#  })

## -----------------------------------------------------------------------------
#  h_3PL_basic <- list(res = function(altpars, nullpars = NULL) {
#      n.items <- length(altpars[[2]])
#  
#      re <- list(n.items = n.items, itemtype = "3PL",
#          Amat = c(1, 0, 0, rep(0, (n.items - 1) * 3),
#              0, 1, 0, rep(0, (n.items - 1) * 3), 0,
#              0, 1, rep(0, (n.items - 1) * 3)) |>
#              matrix(ncol = n.items * 3, byrow = TRUE),
#          cvec = c(1, 0, 0.2), model = mirt::mirt.model(paste("F = 1-",
#              n.items, "
#                             FIXED = (1, d), (1,a1), (1,g)
#                             START = (1,d,0),(1,a1,1),(1,g,.2)")))
#      return(re)
#  }, unres = function(altpars) {
#      n.items <- length(altpars[[2]])
#  
#      re <- list(parsets = altpars, model = 1, itemtype = "3PL",
#          longpars = pars.long(pars = altpars, itemtype = "3PL"))
#  
#      return(re)
#  }, maximizeL = function(hyp) {
#      # Hypothesis-specific algorithm to find the
#      # maximum likelihood restricted parameter set
#  
#  
#      maxlpreload <- function(pars) {
#          # returns the density for each response
#          # pattern under the model parameters pars
#  
#          patterns <- as.matrix(expand.grid(lapply(seq_len(length(pars$a)),
#              function(x) c(0, 1))))
#  
#          pre <- c()
#          for (i in seq_len(nrow(patterns))) {
#              pre[i] <- funs$g(patterns[i, ], pars)
#          }
#  
#          return(pre)
#      }
#  
#  
#      maxl <- function(x, pars, pre) {
#          # calculates the likelihood of parameters
#          # x given model 'pars'
#          patterns <- as.matrix(expand.grid(lapply(seq_len(length(pars$a)),
#              function(x) c(0, 1))))
#  
#          x <- list(a = c(x, pars$a[2:length(pars$a)]),
#              d = c(0, pars$d[2:length(pars$d)]))
#  
#          res <- c()
#          for (i in seq_len(nrow(patterns))) {
#              px <- pre[i]
#              qx <- funs$g(patterns[i, ], x)
#              res[i] <- {
#                  px * log(qx)
#              }
#          }
#          re <- -sum(res)
#      }
#      resmod <- hyp$resmod
#      unresmod <- hyp$unresmod
#  
#      pars <- unresmod$parsets
#      funs <- load.functions(unresmod$itemtype)
#  
#      startval <- pars$a[1]
#  
#      maxlpre <- maxlpreload(pars)
#  
#      optpar <- stats::optim(startval, function(x) {
#          maxl(x, pars, maxlpre)
#      }, method = "BFGS")
#      re <- pars
#      re$a <- c(optpar$par[1], pars$a[2:length(pars$a)])
#      re$d <- c(0, pars$d[2:length(pars$d)])
#  
#      return(re)
#  })

## -----------------------------------------------------------------------------
#  h_multi_basic <- list(res = function(altpars, nullpars = NULL) {
#      n.items <- length(altpars[[2]])
#  
#      re <- list(n.items = n.items, itemtype = "2PL",
#          Amat = c(0, 0, 1, 0, 0, -1, rep(0, (n.items -
#              3) * 3 + 2)) |>
#              matrix(ncol = n.items * 3 - 1, byrow = TRUE),
#          cvec = 0, model = mirt::mirt.model(paste("F1 = 1-",
#              n.items, "
#                             F2 = 1-",
#              n.items - 1, "
#                             CONSTRAIN = (1-2, d")))
#      return(re)
#  }, unres = function(altpars) {
#      n.items <- length(altpars[[2]])
#  
#      re <- list(parsets = altpars, model = mirt::mirt.model(paste("F1 = 1-",
#          n.items, "
#                             F2 = 1-",
#          n.items - 1, "")), itemtype = "2PL", longpars = pars.long(pars = altpars,
#          itemtype = "2PL"))
#  
#      return(re)
#  }, maximizeL = function(hyp) {
#      # Hypothesis-specific algorithm to find the
#      # maximum likelihood restricted parameter set
#  
#      # not written yet, only sampling-based
#      # available for now
#  })

## -----------------------------------------------------------------------------
#  h_multi_basic2 <- list(res = function(altpars, nullpars = NULL) {
#      n.items <- length(altpars[[2]])
#  
#      re <- list(n.items = n.items, itemtype = "2PL",
#          Amat = c(0, 0, 1, rep(0, (n.items - 2) * 3 +
#              2)) |>
#              matrix(ncol = n.items * 3 - 1, byrow = TRUE),
#          cvec = 2, model = mirt::mirt.model(paste("F1 = 1-",
#              n.items, "
#                             F2 = 1-",
#              n.items - 1, "
#                             FIXED = (1, d)
#                             START = (1,d,2)")))
#      return(re)
#  }, unres = function(altpars) {
#      n.items <- length(altpars[[2]])
#  
#      re <- list(parsets = altpars, model = mirt::mirt.model(paste("F1 = 1-",
#          n.items, "
#                             F2 = 1-",
#          n.items - 1, "")), itemtype = "2PL", longpars = pars.long(pars = altpars,
#          itemtype = "2PL"))
#  
#      return(re)
#  }, maximizeL = function(hyp) {
#      # Hypothesis-specific algorithm to find the
#      # maximum likelihood restricted parameter set
#  
#      # not written yet, only sampling-based
#      # available for now
#  })

Try the irtpwr package in your browser

Any scripts or data that you put into this service are public.

irtpwr documentation built on Nov. 20, 2023, 5:07 p.m.