tests/testthat/_snaps/isativ.md

ivisat() works correctly

$selection

Date: 
Dependent var.: y 
Method: Ordinary Least Squares (OLS)
Variance-Covariance: Ordinary 
No. of observations (mean eq.): 50 
Sample: 1 to 50

SPECIFIC mean equation:

          coef std.error  t-stat   p-value    
cons   1.04674   0.12750  8.2095 1.711e-10 ***
x1     1.66156   0.13146 12.6391 < 2.2e-16 ***
x2    -1.04996   0.12300 -8.5364 5.788e-11 ***
iis16  2.37449   0.88440  2.6849   0.01012 *  
iis18 -2.31272   0.86844 -2.6631   0.01070 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Diagnostics and fit:

                   Chi-sq df p-value
Ljung-Box AR(1)   1.77243  1  0.1831
Ljung-Box ARCH(1) 0.95742  1  0.3278

SE of regression   0.83540
R-squared          0.87338
Log-lik.(n=50)   -59.32075

$final

Call:
ivreg::ivreg(formula = as.formula(fml_sel), data = d)

Coefficients:
  cons      x1   iis16   iis18      x2  
 1.047   1.662   2.374  -2.313  -1.050


attr(,"class")
[1] "ivisat"
$selection

Date: 
Dependent var.: y 
Method: Ordinary Least Squares (OLS)
Variance-Covariance: Ordinary 
No. of observations (mean eq.): 50 
Sample: 1 to 50

SPECIFIC mean equation:

         coef std.error  t-stat   p-value    
cons  1.05156   0.14129  7.4427 1.749e-09 ***
x1    1.78997   0.14246 12.5644 < 2.2e-16 ***
x2   -1.05753   0.13956 -7.5779 1.094e-09 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Diagnostics and fit:

                    Chi-sq df p-value
Ljung-Box AR(1)   0.087717  1  0.7671
Ljung-Box ARCH(1) 1.104955  1  0.2932

SE of regression   0.94471
R-squared          0.83088
Log-lik.(n=50)   -66.55617

$final

Call:
ivreg::ivreg(formula = as.formula(fml_sel), data = d)

Coefficients:
  cons      x1      x2  
 1.052   1.790  -1.058


attr(,"class")
[1] "ivisat"
$selection

Date: 
Dependent var.: y 
Method: Ordinary Least Squares (OLS)
Variance-Covariance: Ordinary 
No. of observations (mean eq.): 50 
Sample: 1 to 50

SPECIFIC mean equation:

          coef std.error  t-stat   p-value    
cons   1.62505   0.30676  5.2975 4.569e-06 ***
x1     1.58185   0.12494 12.6604 1.420e-15 ***
x2    -1.06560   0.11541 -9.2329 1.832e-11 ***
tis8  -1.99978   0.69895 -2.8611 0.0066820 ** 
tis9   2.84891   0.95191  2.9928 0.0047197 ** 
tis12 -1.31233   0.48133 -2.7264 0.0094566 ** 
tis16  3.81242   1.14748  3.3224 0.0019148 ** 
tis17 -5.80749   1.44999 -4.0052 0.0002618 ***
tis19  4.35102   1.25749  3.4601 0.0012976 ** 
tis20 -1.87398   0.76825 -2.4393 0.0192469 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Diagnostics and fit:

                   Chi-sq df p-value
Ljung-Box AR(1)   0.21839  1  0.6403
Ljung-Box ARCH(1) 0.31993  1  0.5716

SE of regression   0.76702
R-squared          0.90512
Log-lik.(n=50)   -52.10632

$final

Call:
ivreg::ivreg(formula = as.formula(fml_sel), data = d)

Coefficients:
  cons      x1    tis8    tis9   tis12   tis16   tis17   tis19   tis20      x2  
 1.625   1.582  -2.000   2.849  -1.312   3.812  -5.807   4.351  -1.874  -1.066


attr(,"class")
[1] "ivisat"
$selection

Date: 
Dependent var.: y 
Method: Ordinary Least Squares (OLS)
Variance-Covariance: Ordinary 
No. of observations (mean eq.): 50 
Sample: 1 to 50

SPECIFIC mean equation:

         coef std.error  t-stat   p-value    
cons  1.04674   0.12750  8.2095 1.711e-10 ***
x1    1.66156   0.13146 12.6391 < 2.2e-16 ***
x2   -1.04996   0.12300 -8.5364 5.788e-11 ***
my16  2.37449   0.88440  2.6849   0.01012 *  
my18 -2.31272   0.86844 -2.6631   0.01070 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Diagnostics and fit:

                   Chi-sq df p-value
Ljung-Box AR(1)   1.77243  1  0.1831
Ljung-Box ARCH(1) 0.95742  1  0.3278

SE of regression   0.83540
R-squared          0.87338
Log-lik.(n=50)   -59.32075

$final

Call:
ivreg::ivreg(formula = as.formula(fml_sel), data = d)

Coefficients:
  cons      x1    my16    my18      x2  
 1.047   1.662   2.374  -2.313  -1.050


attr(,"class")
[1] "ivisat"
$selection

Date: 
Dependent var.: y 
Method: Ordinary Least Squares (OLS)
Variance-Covariance: Ordinary 
No. of observations (mean eq.): 50 
Sample: 1 to 50

SPECIFIC mean equation:

         coef std.error  t-stat   p-value    
cons  1.04674   0.12750  8.2095 1.711e-10 ***
x1    1.66156   0.13146 12.6391 < 2.2e-16 ***
x2   -1.04996   0.12300 -8.5364 5.788e-11 ***
my16  2.37449   0.88440  2.6849   0.01012 *  
my18 -2.31272   0.86844 -2.6631   0.01070 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Diagnostics and fit:

                   Chi-sq df p-value
Ljung-Box AR(1)   1.77243  1  0.1831
Ljung-Box ARCH(1) 0.95742  1  0.3278

SE of regression   0.83540
R-squared          0.87338
Log-lik.(n=50)   -59.32075

$final

Call:
ivreg::ivreg(formula = as.formula(fml_sel), data = d)

Coefficients:
  cons      x1    my16    my18      x2  
 1.047   1.662   2.374  -2.313  -1.050


attr(,"class")
[1] "ivisat"

isativ() works correctly with argument 'fast'

$selection

Date: 
Dependent var.: y 
Method: Ordinary Least Squares (OLS)
Variance-Covariance: Ordinary 
No. of observations (mean eq.): 50 
Sample: 1 to 50

SPECIFIC mean equation:

          coef std.error  t-stat   p-value    
cons   1.04674   0.12750  8.2095 1.711e-10 ***
x1     1.66156   0.13146 12.6391 < 2.2e-16 ***
x2    -1.04996   0.12300 -8.5364 5.788e-11 ***
iis16  2.37449   0.88440  2.6849   0.01012 *  
iis18 -2.31272   0.86844 -2.6631   0.01070 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Diagnostics and fit:

                   Chi-sq df p-value
Ljung-Box AR(1)   1.77243  1  0.1831
Ljung-Box ARCH(1) 0.95742  1  0.3278

SE of regression   0.83540
R-squared          0.87338
Log-lik.(n=50)   -59.32075

$final

Call:
ivreg::ivreg(formula = as.formula(fml_sel), data = d)

Coefficients:
  cons      x1   iis16   iis18      x2  
 1.047   1.662   2.374  -2.313  -1.050


attr(,"class")
[1] "ivisat"
$selection

Date: 
Dependent var.: y 
Method: Ordinary Least Squares (OLS)
Variance-Covariance: Ordinary 
No. of observations (mean eq.): 50 
Sample: 1 to 50

SPECIFIC mean equation:

         coef std.error  t-stat   p-value    
cons  1.05156   0.14129  7.4427 1.749e-09 ***
x1    1.78997   0.14246 12.5644 < 2.2e-16 ***
x2   -1.05753   0.13956 -7.5779 1.094e-09 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Diagnostics and fit:

                    Chi-sq df p-value
Ljung-Box AR(1)   0.087717  1  0.7671
Ljung-Box ARCH(1) 1.104955  1  0.2932

SE of regression   0.94471
R-squared          0.83088
Log-lik.(n=50)   -66.55617

$final

Call:
ivreg::ivreg(formula = as.formula(fml_sel), data = d)

Coefficients:
  cons      x1      x2  
 1.052   1.790  -1.058


attr(,"class")
[1] "ivisat"
$selection

Date: 
Dependent var.: y 
Method: Ordinary Least Squares (OLS)
Variance-Covariance: Ordinary 
No. of observations (mean eq.): 50 
Sample: 1 to 50

SPECIFIC mean equation:

          coef std.error  t-stat   p-value    
cons   1.62505   0.30676  5.2975 4.569e-06 ***
x1     1.58185   0.12494 12.6604 1.420e-15 ***
x2    -1.06560   0.11541 -9.2329 1.832e-11 ***
tis8  -1.99978   0.69895 -2.8611 0.0066820 ** 
tis9   2.84891   0.95191  2.9928 0.0047197 ** 
tis12 -1.31233   0.48133 -2.7264 0.0094566 ** 
tis16  3.81242   1.14748  3.3224 0.0019148 ** 
tis17 -5.80749   1.44999 -4.0052 0.0002618 ***
tis19  4.35102   1.25749  3.4601 0.0012976 ** 
tis20 -1.87398   0.76825 -2.4393 0.0192469 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Diagnostics and fit:

                   Chi-sq df p-value
Ljung-Box AR(1)   0.21839  1  0.6403
Ljung-Box ARCH(1) 0.31993  1  0.5716

SE of regression   0.76702
R-squared          0.90512
Log-lik.(n=50)   -52.10632

$final

Call:
ivreg::ivreg(formula = as.formula(fml_sel), data = d)

Coefficients:
  cons      x1    tis8    tis9   tis12   tis16   tis17   tis19   tis20      x2  
 1.625   1.582  -2.000   2.849  -1.312   3.812  -5.807   4.351  -1.874  -1.066


attr(,"class")
[1] "ivisat"


Try the ivgets package in your browser

Any scripts or data that you put into this service are public.

ivgets documentation built on Sept. 11, 2024, 6:19 p.m.