Nothing
# Copyright (C) 2020-2023 Koen Derks
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
context("Validation of function auditPrior")
# jfa version 0.2.0
test_that(desc = "(id: f2-v0.1.0-t1) Test for method = 'default'", {
prior <- auditPrior(conf.level = 0.95, likelihood = "binomial", method = "default")
expect_equal(prior[["description"]]$alpha, 1)
expect_equal(prior[["description"]]$beta, 1)
prior <- auditPrior(conf.level = 0.95, likelihood = "poisson", method = "default")
expect_equal(prior[["description"]]$alpha, 1)
expect_equal(prior[["description"]]$beta, 1)
prior <- auditPrior(conf.level = 0.95, likelihood = "hypergeometric", method = "default", N.units = 3500)
expect_equal(prior[["description"]]$alpha, 1)
expect_equal(prior[["description"]]$beta, 1)
})
test_that(desc = "(id: f2-v0.1.0-t2) Test for method = 'impartial'", {
prior <- auditPrior(conf.level = 0.95, likelihood = "binomial", method = "impartial", materiality = 0.05)
expect_equal(prior[["description"]]$alpha, 1)
expect_equal(prior[["description"]]$beta, 13.51341, tolerance = 0.001)
prior <- auditPrior(conf.level = 0.95, likelihood = "binomial", method = "impartial", expected = 0.02, materiality = 0.05)
expect_equal(prior[["description"]]$alpha, 1.4114, tolerance = 0.001)
expect_equal(prior[["description"]]$beta, 21.1586, tolerance = 0.001)
prior <- auditPrior(conf.level = 0.95, likelihood = "poisson", method = "impartial", materiality = 0.05)
expect_equal(prior[["description"]]$alpha, 1)
expect_equal(prior[["description"]]$beta, 13.86294, tolerance = 0.001)
})
test_that(desc = "(id: f2-v0.1.0-t3) Test for method = 'hyp'", {
testthat::skip_on_cran()
prior <- auditPrior(materiality = 0.05, conf.level = 0.95, method = "hyp", likelihood = "binomial", p.hmin = 0.3)
expect_equal(prior[["description"]]$alpha, 1)
expect_equal(prior[["description"]]$beta, 6.954, tolerance = 0.001)
prior <- auditPrior(materiality = 0.05, conf.level = 0.95, method = "hyp", likelihood = "binomial", p.hmin = 1 - 0.3)
expect_equal(prior[["description"]]$alpha, 1)
expect_equal(prior[["description"]]$beta, 23.47232, tolerance = 0.001)
prior <- auditPrior(materiality = 0.05, conf.level = 0.95, method = "hyp", likelihood = "poisson", p.hmin = 0.3)
expect_equal(prior[["description"]]$alpha, 1)
expect_equal(prior[["description"]]$beta, 7.133, tolerance = 0.001)
})
test_that(desc = "(id: f2-v0.1.0-t4) Test for method = 'arm'", {
testthat::skip_on_cran()
prior <- auditPrior(materiality = 0.05, conf.level = 0.95, method = "arm", likelihood = "binomial", ir = 0.6, cr = 0.6)
expect_equal(prior[["description"]]$alpha, 1)
expect_equal(prior[["description"]]$beta, 20, tolerance = 0.001)
prior <- auditPrior(materiality = 0.05, conf.level = 0.95, method = "arm", likelihood = "poisson", ir = 0.6, cr = 0.6)
expect_equal(prior[["description"]]$alpha, 1)
expect_equal(prior[["description"]]$beta, 20, tolerance = 0.001)
prior <- auditPrior(materiality = 0.05, conf.level = 0.95, method = "arm", likelihood = "hypergeometric", ir = 0.6, cr = 0.6, N.units = 3500)
expect_equal(prior[["description"]]$alpha, 1)
expect_equal(prior[["description"]]$beta, 19, tolerance = 0.001)
})
test_that(desc = "(id: f2-v0.1.0-t5) Test for method = 'sample'", {
testthat::skip_on_cran()
prior <- auditPrior(materiality = 0.05, conf.level = 0.95, method = "sample", likelihood = "binomial", n = 30, x = 1)
expect_equal(prior[["description"]]$alpha, 2)
expect_equal(prior[["description"]]$beta, 29)
prior <- auditPrior(materiality = 0.05, conf.level = 0.95, method = "sample", likelihood = "poisson", n = 30, x = 1)
expect_equal(prior[["description"]]$alpha, 2)
expect_equal(prior[["description"]]$beta, 30)
prior <- auditPrior(materiality = 0.05, conf.level = 0.95, method = "sample", likelihood = "hypergeometric", n = 30, x = 1, N.units = 3500)
expect_equal(prior[["description"]]$alpha, 2)
expect_equal(prior[["description"]]$beta, 29)
})
test_that(desc = "(id: f2-v0.1.0-t6) Test for method = 'power'", {
testthat::skip_on_cran()
prior <- auditPrior(materiality = 0.05, conf.level = 0.95, method = "power", likelihood = "binomial", n = 30, x = 1, delta = 0.6)
expect_equal(prior[["description"]]$alpha, 1.6, tolerance = 0.001)
expect_equal(prior[["description"]]$beta, 17.4, tolerance = 0.001)
prior <- auditPrior(materiality = 0.05, conf.level = 0.95, method = "power", likelihood = "poisson", n = 30, x = 1, delta = 0.6)
expect_equal(prior[["description"]]$alpha, 1.6, tolerance = 0.001)
expect_equal(prior[["description"]]$beta, 18, tolerance = 0.001)
prior <- auditPrior(materiality = 0.05, conf.level = 0.95, method = "power", likelihood = "hypergeometric", n = 30, x = 1, N.units = 3500, delta = 0.6)
expect_equal(prior[["description"]]$alpha, 1.6, tolerance = 0.001)
expect_equal(prior[["description"]]$beta, 17.4, tolerance = 0.001)
})
# jfa version 0.3.0 - 0.3.1
# No changes to be benchmarked
# jfa version 0.4.0
test_that(desc = "(id: f2-v0.4.0-t1) Test for method = 'impartial' with expected errors > 0", {
prior <- auditPrior(materiality = 0.05, conf.level = 0.95, method = "impartial", likelihood = "binomial", expected = 0.01)
expect_equal(prior[["description"]]$alpha, 1.1554, tolerance = 0.001)
expect_equal(prior[["description"]]$beta, 16.3846, tolerance = 0.001)
prior <- auditPrior(materiality = 0.05, conf.level = 0.95, method = "impartial", likelihood = "binomial", expected = 0.025)
expect_equal(prior[["description"]]$alpha, 1.6146, tolerance = 0.001)
expect_equal(prior[["description"]]$beta, 24.9694, tolerance = 0.001)
prior <- auditPrior(materiality = 0.05, conf.level = 0.95, method = "impartial", likelihood = "poisson", expected = 0.01)
expect_equal(prior[["description"]]$alpha, 1.1722, tolerance = 0.001)
expect_equal(prior[["description"]]$beta, 17.22, tolerance = 0.001)
prior <- auditPrior(materiality = 0.05, conf.level = 0.95, method = "impartial", likelihood = "poisson", expected = 0.025)
expect_equal(prior[["description"]]$alpha, 1.681, tolerance = 0.001)
expect_equal(prior[["description"]]$beta, 27.24, tolerance = 0.001)
})
# jfa version 0.5.0
test_that(desc = "(id: f2-v0.5.0-t1) Test for summary and print function", {
testthat::skip_on_cran()
prior <- auditPrior(conf.level = 0.95, likelihood = "binomial", method = "default")
invisible(capture.output(print(prior)))
invisible(capture.output(summary(prior)))
expect_equal(prior[["description"]]$alpha, 1)
expect_equal(prior[["description"]]$beta, 1)
})
test_that(desc = "(id: f2-v0.5.0-t2) Test for plot function", {
testthat::skip_on_cran()
prior <- auditPrior(conf.level = 0.95, likelihood = "binomial", method = "default", materiality = 0.05)
p <- plot(prior)
expect_equal(is.null(prior), FALSE)
prior <- auditPrior(conf.level = 0.95, likelihood = "hypergeometric", method = "default", N.units = 1000)
p <- plot(prior)
expect_equal(is.null(prior), FALSE)
prior <- auditPrior(conf.level = 0.95, likelihood = "poisson", method = "default", materiality = 0.05)
p <- plot(prior)
expect_equal(is.null(prior), FALSE)
})
# jfa version 0.5.1 - 0.5.2
# No changes to be benchmarked
# jfa version 0.5.3
test_that(desc = "(id: f2-v0.5.3-t1) Test for bram method binomial", {
testthat::skip_on_cran()
N <- 20000
materiality <- 2000
expectedMisstatement <- 300
expectedUpperBound <- 5000
ub <- expectedUpperBound / N
theta <- materiality / N
expected <- expectedMisstatement / N
prior <- auditPrior(conf.level = 0.95, materiality = theta, likelihood = "binomial", method = "bram", expected = expected, ub = ub)
expect_equal(prior[["description"]]$alpha, 1.1581)
expect_equal(prior[["description"]]$beta, 11.3819)
})
test_that(desc = "(id: f2-v0.5.3-t2) Test for bram method poisson", {
testthat::skip_on_cran()
N <- 20000
materiality <- 2000
expectedMisstatement <- 300
expectedUpperBound <- 5000
ub <- expectedUpperBound / N
theta <- materiality / N
expected <- expectedMisstatement / N
prior <- auditPrior(conf.level = 0.95, materiality = theta, likelihood = "poisson", method = "bram", expected = expected, ub = ub)
expect_equal(prior[["description"]]$alpha, 1.20259, tolerance = 0.00001)
expect_equal(prior[["description"]]$beta, 13.50597, tolerance = 0.00001)
})
# jfa version 0.5.4 - 0.5.7
# No changes to be benchmarked
# jfa version 0.6.0
test_that(desc = "(id: f2-v0.6.0-t1) Test for param method binomial", {
testthat::skip_on_cran()
prior <- auditPrior(materiality = 0.05, likelihood = "binomial", method = "param", alpha = 5, beta = 10)
expect_equal(prior[["description"]]$alpha, 5)
expect_equal(prior[["description"]]$beta, 10)
})
test_that(desc = "(id: f2-v0.6.0-t2) Test for param method poisson", {
testthat::skip_on_cran()
prior <- auditPrior(materiality = 0.05, likelihood = "poisson", method = "param", alpha = 5, beta = 10)
expect_equal(prior[["description"]]$alpha, 5)
expect_equal(prior[["description"]]$beta, 10)
})
test_that(desc = "(id: f2-v0.6.0-t1) Test for param method hypergeometric", {
testthat::skip_on_cran()
prior <- auditPrior(materiality = 0.05, likelihood = "hypergeometric", method = "param", alpha = 5, beta = 10, N = 100)
expect_equal(prior[["description"]]$alpha, 5)
expect_equal(prior[["description"]]$beta, 10)
})
# jfa 0.6.1 - 0.6.4
# No changes to be benchmarked
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.