R/RcppExports.R

Defines functions file_coding get_idf_cpp get_tuple_list get_tuple_vector jiebaclass_ptr jiebaclass_ptr_v2 jiebaclass_mix_cut jiebaclass_mp_cut jiebaclass_hmm_cut jiebaclass_full_cut jiebaclass_query_cut jiebaclass_tag_tag jiebaclass_tag_file jiebaclass_tag_vec add_user_word key_ptr key_tag key_cut key_keys sim_ptr sim_sim sim_vec sim_distance sim_distance_vec u64tobin cpp_ham_dist cpp_ham_dist_mat words_freq

Documented in file_coding

# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393

#' Files encoding detection
#' 
#' This function detects the encoding of input files. 
#' You can also check encoding with checkenc package which is on GitHub.
#' 
#' This function will choose the most likely encoding, and it will be 
#' more stable for a large input text file.
#'  
#' @param file A file path.
#' @return The encoding of file
#' @author Wu Yongwei, Qin wenfeng
#' @references \url{https://github.com/adah1972/tellenc}
#' @seealso \url{https://github.com/qinwf/checkenc}
#' @export
file_coding <- function(file) {
    .Call(`_jiebaR_file_coding`, file)
}

get_idf_cpp <- function(x, stop_) {
    .Call(`_jiebaR_get_idf_cpp`, x, stop_)
}

get_tuple_list <- function(x, step) {
    .Call(`_jiebaR_get_tuple_list`, x, step)
}

get_tuple_vector <- function(x, step) {
    .Call(`_jiebaR_get_tuple_vector`, x, step)
}

jiebaclass_ptr <- function(dict, model, user, stop) {
    .Call(`_jiebaR_jiebaclass_ptr`, dict, model, user, stop)
}

jiebaclass_ptr_v2 <- function(dict, model, user, stop, uw) {
    .Call(`_jiebaR_jiebaclass_ptr_v2`, dict, model, user, stop, uw)
}

jiebaclass_mix_cut <- function(x, cutter) {
    .Call(`_jiebaR_jiebaclass_mix_cut`, x, cutter)
}

jiebaclass_mp_cut <- function(x, num, cutter) {
    .Call(`_jiebaR_jiebaclass_mp_cut`, x, num, cutter)
}

jiebaclass_hmm_cut <- function(x, cutter) {
    .Call(`_jiebaR_jiebaclass_hmm_cut`, x, cutter)
}

jiebaclass_full_cut <- function(x, cutter) {
    .Call(`_jiebaR_jiebaclass_full_cut`, x, cutter)
}

jiebaclass_query_cut <- function(x, cutter) {
    .Call(`_jiebaR_jiebaclass_query_cut`, x, cutter)
}

jiebaclass_tag_tag <- function(x, cutter) {
    .Call(`_jiebaR_jiebaclass_tag_tag`, x, cutter)
}

jiebaclass_tag_file <- function(x, cutter) {
    .Call(`_jiebaR_jiebaclass_tag_file`, x, cutter)
}

jiebaclass_tag_vec <- function(code, cutter) {
    .Call(`_jiebaR_jiebaclass_tag_vec`, code, cutter)
}

add_user_word <- function(x, tag, cutter) {
    .Call(`_jiebaR_add_user_word`, x, tag, cutter)
}

key_ptr <- function(n, dict, model, idf, stop, user) {
    .Call(`_jiebaR_key_ptr`, n, dict, model, idf, stop, user)
}

key_tag <- function(x, cutter) {
    .Call(`_jiebaR_key_tag`, x, cutter)
}

key_cut <- function(x, cutter) {
    .Call(`_jiebaR_key_cut`, x, cutter)
}

key_keys <- function(x, cutter) {
    .Call(`_jiebaR_key_keys`, x, cutter)
}

sim_ptr <- function(dict, model, idf, stop, user) {
    .Call(`_jiebaR_sim_ptr`, dict, model, idf, stop, user)
}

sim_sim <- function(code, topn, cutter) {
    .Call(`_jiebaR_sim_sim`, code, topn, cutter)
}

sim_vec <- function(code, topn, cutter) {
    .Call(`_jiebaR_sim_vec`, code, topn, cutter)
}

sim_distance <- function(lhs, rhs, topn, cutter) {
    .Call(`_jiebaR_sim_distance`, lhs, rhs, topn, cutter)
}

sim_distance_vec <- function(lcode, rcode, topn, cutter) {
    .Call(`_jiebaR_sim_distance_vec`, lcode, rcode, topn, cutter)
}

u64tobin <- function(x) {
    .Call(`_jiebaR_u64tobin`, x)
}

cpp_ham_dist <- function(x, y) {
    .Call(`_jiebaR_cpp_ham_dist`, x, y)
}

cpp_ham_dist_mat <- function(x, y) {
    .Call(`_jiebaR_cpp_ham_dist_mat`, x, y)
}

words_freq <- function(x) {
    .Call(`_jiebaR_words_freq`, x)
}

Try the jiebaR package in your browser

Any scripts or data that you put into this service are public.

jiebaR documentation built on Dec. 16, 2019, 1:19 a.m.