Nothing
#' @title Create Joint Latent Space Model for Social networks and Multivariate Attributes
#'
#' @description \code{jlsm} provides a set of latent space models for jointly modeling
#' unipartite social networks with bipartite attribute networks. The latent space models are implemented using the
#' variational inference approach.
#'
#' @details Latent space models for bipartite networks: the function \code{\link{blsm}} implements the bipartite latent space model (BLSM) outlined in Wang et al. (2021) using variational inference and squared Euclidian distance; the function
#' \code{\link{aplsm}} implements person and attribute latent space model (APLSM) introduced by
#' Wang et.al (2021).
#' These models assume that the person and attribute information can be summarized by latent person and attribute variables.
#' Both the Euclidean distances and the vector distances are used to describe relationships among persons and between persons and attributes.
#'
#' @references Wang, S. S., Paul, S., Logan, J., & De Boeck, P. (2019). Joint analysis of social and item response networks with latent space models. arXiv preprint arXiv:1910.12128.
#' @name jlsm-package
#' @aliases jlsm
#' @import MASS
#' @importFrom lvm4net lsm
#' @importFrom stats as.dist cmdscale dist glm rnorm rbinom
#' @importFrom expm sqrtm
#' @importFrom utils combn
#' @importFrom graphics abline boxplot legend lines matlines matplot matpoints mtext par plot points polygon text
#' @importFrom ellipse ellipse
#' @importFrom mvtnorm dmvnorm
#' @importFrom matrixcalc is.positive.definite
#' @importFrom boot inv.logit
#' @importFrom pROC roc
#' @importFrom grDevices rgb
#' @importFrom network network.arrow
#' @importFrom Matrix nearPD
#' @docType package
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.