joinRMLBig | R Documentation |
function for joint model in BIG DATA using joineRML
joinRMLBig(dtlong, dtsurv, longm, survm, samplesize = 50, rd, timeVar, id)
dtlong |
longitudinal dataset, which contains id,visit time,longitudinal measurements along with various covariates |
dtsurv |
survival dataset corresponding to the longitudinal dataset, with survival status and survival time |
longm |
model for longitudinal response |
survm |
survival model |
samplesize |
random effect part |
rd |
random effect part |
timeVar |
time variable in longitudinal model, included in the longitudinal data |
id |
name of id column in longitudinal dataset |
returns a list containing various output which are useful for prediction.
Atanu Bhattacharjee, Bhrigu Kumar Rajbongshi and Gajendra Kumar Vishwakarma
Hickey, Graeme L., et al. "joineRML: a joint model and software package for time-to-event and multivariate longitudinal outcomes." BMC medical research methodology 18 (2018): 1-14.
jmbayesBig,jmstanBig,jmcsBig
##
library(survival)
library(dplyr)
fit4<-joinRMLBig(dtlong=long2,dtsurv = surv2,longm=y~ x7+visit,survm=Surv(time,status)~x1+visit,
rd=~ visit|id,timeVar='visit',samplesize=200,id='id')
P2<-predJRML(model<-fit4,ids<-c(10),dtlong=long2,dtsurv=surv2)
pp1<-plot(P2$plong[[1]])
pp1<-plot(P2$psurv[[1]])
##
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.