Description Usage Arguments Details Author(s) Examples

Computes the probability function of the Neyman-A distribution

1 |

`x` |
vector of values |

`lambda1, lambda2` |
parameters of the distribution |

`K` |
truncation value for the infinite summation |

`log` |
logical. If TRUE, the logarithm of the probabilities is returned |

The Neyman-A distribution has probability function

*\frac{e^{-λ_1}λ_2^{x}}{x!}∑_{k=0}^∞\frac{(λ_1e^{-λ_2})^kk^x}{k!}*

and is an overdispersion model. The summation is truncated to K.

Rafael A. Moral <rafael_moral@yahoo.com.br>, Clarice G. B. Demétrio and John Hinde

1 2 | ```
x <- 0:10
dneymanA(x, lambda1 = 2, lambda2 = 1.5, K = 50)
``` |

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.