Arith | R Documentation |
Methods for Arithmetic functions for jordans: +
,
-
, *
, /
, ^
jordan_negative(z)
jordan_plus_jordan(e1,e2)
jordan_plus_numeric(e1,e2)
jordan_prod_numeric(e1,e2)
jordan_power_jordan(e1,e2)
albert_arith_albert(e1,e2)
albert_arith_numeric(e1,e2)
albert_inverse(e1)
albert_power_albert(...)
albert_power_numeric(e1,e2)
albert_power_single_n(e1,n)
albert_prod_albert(e1,e2)
chm_arith_chm(e1,e2)
chm_arith_numeric(e1,e2)
chm_inverse(e1)
chm_power_numeric(e1,e2)
chm_prod_chm(e1,e2)
numeric_arith_albert(e1,e2)
numeric_arith_chm(e1,e2)
numeric_arith_qhm(e1,e2)
numeric_arith_rsm(e1,e2)
qhm_arith_numeric(e1,e2)
qhm_arith_qhm(e1,e2)
qhm_inverse(x)
qhm_power_numeric(e1,e2)
qhm_prod_qhm(e1,e2)
rsm_arith_numeric(e1,e2)
rsm_arith_rsm(e1,e2)
rsm_inverse(e1)
rsm_power_numeric(e1,e2)
rsm_prod_rsm(e1,e2)
spin_plus_numeric(e1,e2)
spin_plus_spin(e1,e2)
spin_power_numeric(e1,e2)
spin_power_single_n(e1,n)
spin_power_spin(...)
spin_prod_numeric(e1,e2)
spin_prod_spin(e1,e2)
spin_inverse(...)
spin_negative(e1)
vec_albertprod_vec(x,y)
vec_chmprod_vec(x,y)
vec_qhmprod_vec(x,y)
vec_rsmprod_vec(x,y)
z , e1 , e2 |
Jordan objects or numeric vectors |
n |
Integer for powers |
... |
Further arguments (ignored) |
x , y |
Numeric vectors, Jordan objects in independent form |
The package implements the Arith
group of S4
generics so
that idiom like A + B*C
works as expected with jordans.
Functions like jordan_inverse()
and jordan_plus_jordan()
are low-level helper functions. The only really interesting operation
is multiplication; functions like jordan_prod_jordan()
.
Names are implemented and the rules are inherited (via
onion::harmonize_oo()
and onion::harmonize_on()
) from
rbind()
.
generally return jordans
Robin K. S. Hankin
x <- rspin()
y <- rspin()
z <- rspin()
x*(y*(x*x)) - (x*y)*(x*x) # should be zero
x + y*z
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.