Description Usage Arguments Details Value Examples
A wrapper around the great jsonlite::parse_json
. The differences are:
expose argument bigint_as_char
with default TRUE
.
control how to handle NA
and NULL
.
simplifyDataFrame
, simplifyMatrix
, and flatten
default to FALSE
as
they are not very stable in many real world APIs. Use the
tibblify package
for a more robust conversion to a dataframe.
don't collapse strings but error instead if they have more than one element.
1 2 3 4 5 6 7 8 9 10 11 | parse_json(
x,
.na = json_na_error(),
.null = NULL,
simplifyVector = TRUE,
simplifyDataFrame = FALSE,
simplifyMatrix = FALSE,
flatten = FALSE,
bigint_as_char = bigint_default(),
...
)
|
x |
a scalar JSON character |
.na |
Value to return if |
.null |
Return the prototype of |
simplifyVector, simplifyDataFrame, simplifyMatrix, flatten, ... |
passed on
to |
bigint_as_char |
Parse big integers as character? The option
|
To parse a vector of JSON use parse_json_vector
.
A R object. The type depends on the input but is usually a list or a data frame.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | # Parse escaped unicode
parse_json('{"city" : "Z\\u00FCrich"}')
# big integers
big_num <- "9007199254740993"
as.character(parse_json(big_num, bigint_as_char = FALSE))
as.character(parse_json(big_num, bigint_as_char = TRUE))
# NA error by default
try(parse_json(NA))
# ... but one can specify a default value
parse_json(NA, .na = data.frame(a = 1, b = 2))
# input of size 0
parse_json(NULL)
parse_json(character(), .null = data.frame(a = 1, b = 2))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.