kde1d-package | R Documentation |
Provides an efficient implementation of univariate local polynomial kernel density estimators that can handle bounded and discrete data. The implementation utilizes spline interpolation to reduce memory usage and computational demand for large data sets.
Geenens, G. (2014). Probit transformation for kernel density estimation on the unit interval. Journal of the American Statistical Association, 109:505, 346-358, arXiv:1303.4121
Geenens, G., Wang, C. (2018). Local-likelihood transformation kernel density estimation for positive random variables. Journal of Computational and Graphical Statistics, to appear, arXiv:1602.04862
Nagler, T. (2018a). A generic approach to nonparametric function estimation with mixed data. Statistics & Probability Letters, 137:326–330, arXiv:1704.07457
Nagler, T. (2018b). Asymptotic analysis of the jittering kernel density estimator. Mathematical Methods of Statistics, in press, arXiv:1705.05431
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.