kde1d-package: One-Dimensional Kernel Density Estimation

kde1d-packageR Documentation

One-Dimensional Kernel Density Estimation

Description

Provides an efficient implementation of univariate local polynomial kernel density estimators that can handle bounded and discrete data. The implementation utilizes spline interpolation to reduce memory usage and computational demand for large data sets.

References

Geenens, G. (2014). Probit transformation for kernel density estimation on the unit interval. Journal of the American Statistical Association, 109:505, 346-358, arXiv:1303.4121

Geenens, G., Wang, C. (2018). Local-likelihood transformation kernel density estimation for positive random variables. Journal of Computational and Graphical Statistics, to appear, arXiv:1602.04862

Nagler, T. (2018a). A generic approach to nonparametric function estimation with mixed data. Statistics & Probability Letters, 137:326–330, arXiv:1704.07457

Nagler, T. (2018b). Asymptotic analysis of the jittering kernel density estimator. Mathematical Methods of Statistics, in press, arXiv:1705.05431


kde1d documentation built on May 29, 2024, 7:24 a.m.