bw_tt_pi: Nearest-neighbor bandwidth selection for the tapered...

View source: R/bandwidths.R

bw_tt_piR Documentation

Nearest-neighbor bandwidth selection for the tapered transformation estimator

Description

The smoothing parameters are selected by the method of Wen and Wu (2015).

Usage

bw_tt_pi(udata, rho.add = TRUE)

bw_tt_cv(udata, rho.add = T)

Arguments

udata

data.

rho.add

logical; whether a rotation (correlation) parameter shall be included.

Value

Optimal smoothing parameters as in Wen and Wu (2015): a numeric vector of length 4; entries are (h, \rho, \theta_1, \theta_2).

Author(s)

Kuangyu Wen

References

Wen, K. and Wu, X. (2018). Transformation-Kernel Estimation of Copula Densities Journal of Business & Economic Statistics, 38(1), 148–164.


kdecopula documentation built on April 4, 2025, 2:28 a.m.