A Keras model consists of multiple components:
The Keras API saves all of these pieces together in a unified format,
marked by the .keras
extension. This is a zip archive consisting of the
following:
model.weights.h5
(for the whole model),
with directory keys for layers and their weights.Let's take a look at how this works.
If you only have 10 seconds to read this guide, here's what you need to know.
Saving a Keras model:
# Get model (Sequential, Functional Model, or Model subclass) model <- ... # The filename needs to end with the .keras extension model |> save_model('path/to/location.keras')
Loading the model back:
model <- load_model('path/to/location.keras')
Now, let's look at the details.
library(keras3)
This section is about saving an entire model to a single file. The file will include:
compile()
was called)You can save a model with save_model()
.
You can load it back with load_model()
.
The only supported format in Keras 3 is the "Keras v3" format,
which uses the .keras
extension.
Example:
get_model <- function() { # Create a simple model. inputs <- keras_input(shape(32)) outputs <- inputs |> layer_dense(1) model <- keras_model(inputs, outputs) model |> compile(optimizer = optimizer_adam(), loss = "mean_squared_error") model } model <- get_model() # Train the model. test_input <- random_uniform(c(128, 32)) test_target <- random_uniform(c(128, 1)) model |> fit(test_input, test_target) # Calling `save('my_model.keras')` creates a zip archive `my_model.keras`. model |> save_model("my_model.keras") # It can be used to reconstruct the model identically. reconstructed_model <- load_model("my_model.keras") # Let's check: stopifnot(all.equal( model |> predict(test_input), reconstructed_model |> predict(test_input) ))
This section covers the basic workflows for handling custom layers, functions, and models in Keras saving and reloading.
When saving a model that includes custom objects, such as a subclassed Layer,
you must define a get_config()
method on the object class.
If the arguments passed to the constructor (initialize()
method) of the custom object
aren't simple objects (anything other than types like ints, strings,
etc.), then you must also explicitly deserialize these arguments in the from_config()
class method.
Like this:
layer_custom <- Layer( "CustomLayer", initialize = function(sublayer, ...) { super$initialize(...) self$sublayer <- sublayer }, call = function(x) { self$sublayer(x) }, get_config = function() { base_config <- super$get_config() config <- list( sublayer = serialize_keras_object(self$sublayer) ) c(base_config, config) }, from_config = function(cls, config) { sublayer_config <- config$sublayer sublayer <- deserialize_keras_object(sublayer_config) cls(sublayer, !!!config) } )
Please see the Defining the config methods section for more details and examples.
The saved .keras
file is lightweight and does not store the Python code for custom
objects. Therefore, to reload the model, load_model
requires access to the definition
of any custom objects used through one of the following methods:
Below are examples of each workflow:
This is the preferred method, as custom object registration greatly simplifies saving and
loading code. Calling register_keras_serializable()
on a custom object registers
the object globally in a master list,
allowing Keras to recognize the object when loading the model.
Let's create a custom model involving both a custom layer and a custom activation function to demonstrate this.
Example:
# Clear all previously registered custom objects set_custom_objects(clear = TRUE)
## named list()
layer_custom <- Layer( "CustomLayer", initialize = function(self, factor) { super$initialize() self$factor = factor }, call = function(self, x) { x * self$factor }, get_config = function(self) { list(factor = self$factor) } ) # Upon registration, you can optionally specify a package or a name. # If left blank, the package defaults to "Custom" and the name defaults to # the class name. register_keras_serializable(layer_custom, package = "MyLayers") custom_fn <- keras3:::py_func2(function(x) x^2, name = "custom_fn", convert = TRUE) register_keras_serializable(custom_fn, name="custom_fn", package="my_package") # Create the model. get_model <- function() { inputs <- keras_input(shape(4)) mid <- inputs |> layer_custom(0.5) outputs <- mid |> layer_dense(1, activation = custom_fn) model <- keras_model(inputs, outputs) model |> compile(optimizer = "rmsprop", loss = "mean_squared_error") model } # Train the model. train_model <- function(model) { input <- random_uniform(c(4, 4)) target <- random_uniform(c(4, 1)) model |> fit(input, target, verbose = FALSE, epochs = 1) model } test_input <- random_uniform(c(4, 4)) test_target <- random_uniform(c(4, 1)) model <- get_model() |> train_model() model |> save_model("custom_model.keras", overwrite = TRUE) # Now, we can simply load without worrying about our custom objects. reconstructed_model <- load_model("custom_model.keras") # Let's check: stopifnot(all.equal( model |> predict(test_input, verbose = FALSE), reconstructed_model |> predict(test_input, verbose = FALSE) ))
load_model()
model <- get_model() |> train_model() # Calling `save_model('my_model.keras')` creates a zip archive `my_model.keras`. model |> save_model("custom_model.keras", overwrite = TRUE) # Upon loading, pass a named list containing the custom objects used in the # `custom_objects` argument of `load_model()`. reconstructed_model <- load_model( "custom_model.keras", custom_objects = list(CustomLayer = layer_custom, custom_fn = custom_fn), ) # Let's check: stopifnot(all.equal( model |> predict(test_input, verbose = FALSE), reconstructed_model |> predict(test_input, verbose = FALSE) ))
Any code within the custom object scope will be able to recognize the custom objects passed to the scope argument. Therefore, loading the model within the scope will allow the loading of our custom objects.
Example:
model <- get_model() |> train_model() model |> save_model("custom_model.keras", overwrite = TRUE) # Pass the custom objects dictionary to a custom object scope and place # the `keras.models.load_model()` call within the scope. custom_objects <- list(CustomLayer = layer_custom, custom_fn = custom_fn) with_custom_object_scope(custom_objects, { reconstructed_model <- load_model("custom_model.keras") }) # Let's check: stopifnot(all.equal( model |> predict(test_input, verbose = FALSE), reconstructed_model |> predict(test_input, verbose = FALSE) ))
This section is about saving only the model's configuration, without its state. The model's configuration (or architecture) specifies what layers the model contains, and how these layers are connected. If you have the configuration of a model, then the model can be created with a freshly initialized state (no weights or compilation information).
The following serialization APIs are available:
clone_model(model)
: make a (randomly initialized) copy of a model.get_config()
and cls.from_config()
: retrieve the configuration of a layer or model, and recreate
a model instance from its config, respectively.keras.models.model_to_json()
and keras.models.model_from_json()
: similar, but as JSON strings.keras.saving.serialize_keras_object()
: retrieve the configuration any arbitrary Keras object.keras.saving.deserialize_keras_object()
: recreate an object instance from its configuration.You can do in-memory cloning of a model via clone_model()
.
This is equivalent to getting the config then recreating the model from its config
(so it does not preserve compilation information or layer weights values).
Example:
new_model <- clone_model(model)
get_config()
and from_config()
Calling get_config(model)
or get_config(layer)
will return a named list containing
the configuration of the model or layer, respectively. You should define get_config()
to contain arguments needed for the initialize()
method of the model or layer. At loading time,
the from_config(config)
method will then call initialize()
with these arguments to
reconstruct the model or layer.
Layer example:
layer <- layer_dense(, 3, activation="relu") layer_config <- get_config(layer) str(layer_config)
## List of 12 ## $ name : chr "dense_4" ## $ trainable : logi TRUE ## $ dtype :List of 4 ## ..$ module : chr "keras" ## ..$ class_name : chr "DTypePolicy" ## ..$ config :List of 1 ## .. ..$ name: chr "float32" ## ..$ registered_name: NULL ## $ units : int 3 ## $ activation : chr "relu" ## $ use_bias : logi TRUE ## $ kernel_initializer:List of 4 ## ..$ module : chr "keras.initializers" ## ..$ class_name : chr "GlorotUniform" ## ..$ config :List of 1 ## .. ..$ seed: NULL ## ..$ registered_name: NULL ## $ bias_initializer :List of 4 ## ..$ module : chr "keras.initializers" ## ..$ class_name : chr "Zeros" ## ..$ config : Named list() ## ..$ registered_name: NULL ## $ kernel_regularizer: NULL ## $ bias_regularizer : NULL ## $ kernel_constraint : NULL ## $ bias_constraint : NULL ## - attr(*, "__class__")=<class 'keras.src.layers.core.dense.Dense'>
Now let's reconstruct the layer using the from_config()
method:
new_layer <- from_config(layer_config)
Sequential model example:
model <- keras_model_sequential(input_shape = c(32)) |> layer_dense(1) config <- get_config(model) new_model <- from_config(config)
Functional model example:
inputs <- keras_input(c(32)) outputs <- inputs |> layer_dense(1) model <- keras_model(inputs, outputs) config <- get_config(model) new_model <- from_config(config)
save_model_config()
and load_model_config()
This is similar to get_config
/ from_config
, except it turns the model
into a JSON file, which can then be loaded without the original model class.
It is also specific to models, it isn't meant for layers.
Example:
model <- keras_model_sequential(input_shape = c(32)) |> layer_dense(1) save_model_config(model, "model_config.json") new_model <- load_model_config("model_config.json")
unlink("model_config.json")
The serialize_keras_object()
and deserialize_keras_object()
APIs are general-purpose APIs that can be used to serialize or deserialize any Keras
object and any custom object. It is at the foundation of saving model architecture and is
behind all serialize()
/deserialize()
calls in keras.
Example:
my_reg <- regularizer_l1(0.005) config <- serialize_keras_object(my_reg) str(config)
## List of 4 ## $ module : chr "keras.regularizers" ## $ class_name : chr "L1" ## $ config :List of 1 ## ..$ l1: num 0.005 ## $ registered_name: NULL
Note the serialization format containing all the necessary information for proper reconstruction:
module
containing the name of the Keras module or other identifying module the object
comes fromclass_name
containing the name of the object's class.config
with all the information needed to reconstruct the objectregistered_name
for custom objects. See here.Now we can reconstruct the regularizer.
new_reg <- deserialize_keras_object(config) new_reg
## <keras.src.regularizers.regularizers.L1 object> ## signature: (x)
You can choose to only save & load a model's weights. This can be useful if:
Weights can be copied between different objects by using get_weights()
and set_weights()
:
get_weights(<layer>)
: Returns a list of arrays of weight values.set_weights(<layer>weights)
: Sets the model/layer weights to the values
provided (as arrays).Examples:
Transferring weights from one layer to another, in memory
create_layer <- function() { layer <- layer_dense(, 64, activation = "relu", name = "dense_2") layer$build(shape(NA, 784)) layer } layer_1 <- create_layer() layer_2 <- create_layer() # Copy weights from layer 1 to layer 2 layer_2 |> set_weights(get_weights(layer_1))
Transferring weights from one model to another model with a compatible architecture, in memory
# Create a simple functional model inputs <- keras_input(shape=c(784), name="digits") outputs <- inputs |> layer_dense(64, activation = "relu", name = "dense_1") |> layer_dense(64, activation = "relu", name = "dense_2") |> layer_dense(10, name = "predictions") functional_model <- keras_model(inputs = inputs, outputs = outputs, name = "3_layer_mlp") # Define a subclassed model with the same architecture SubclassedModel <- new_model_class( "SubclassedModel", initialize = function(output_dim, name = NULL) { super$initialize(name = name) self$output_dim <- output_dim |> as.integer() self$dense_1 <- layer_dense(, 64, activation = "relu", name = "dense_1") self$dense_2 <- layer_dense(, 64, activation = "relu", name = "dense_2") self$dense_3 <- layer_dense(, self$output_dim, name = "predictions") }, call = function(inputs) { inputs |> self$dense_1() |> self$dense_2() |> self$dense_3() }, get_config = function(self) { list(output_dim = self$output_dim, name = self$name) } ) subclassed_model <- SubclassedModel(10) # Call the subclassed model once to create the weights. subclassed_model(op_ones(c(1, 784))) |> invisible() # Copy weights from functional_model to subclassed_model. set_weights(subclassed_model, get_weights(functional_model)) stopifnot(all.equal( get_weights(functional_model), get_weights(subclassed_model) ))
The case of stateless layers
Because stateless layers do not change the order or number of weights, models can have compatible architectures even if there are extra/missing stateless layers.
input <- keras_input(shape = c(784), name = "digits") output <- input |> layer_dense(64, activation = "relu", name = "dense_1") |> layer_dense(64, activation = "relu", name = "dense_2") |> layer_dense(10, name = "predictions") functional_model <- keras_model(inputs, outputs, name = "3_layer_mlp") input <- keras_input(shape = c(784), name = "digits") output <- input |> layer_dense(64, activation = "relu", name = "dense_1") |> layer_dense(64, activation = "relu", name = "dense_2") |> # Add a dropout layer, which does not contain any weights. layer_dropout(0.5) |> layer_dense(10, name = "predictions") functional_model_with_dropout <- keras_model(input, output, name = "3_layer_mlp") set_weights(functional_model_with_dropout, get_weights(functional_model))
Weights can be saved to disk by calling save_model_weights(filepath)
.
The filename should end in .weights.h5
.
Example:
sequential_model = keras_model_sequential(input_shape = c(784), input_name = "digits") |> layer_dense(64, activation = "relu", name = "dense_1") |> layer_dense(64, activation = "relu", name = "dense_2") |> layer_dense(10, name = "predictions") sequential_model |> save_model_weights("my_model.weights.h5") sequential_model |> load_model_weights("my_model.weights.h5")
Note that using freeze_weights()
may result in a different
output from get_weights(layer)
ordering when the model contains nested layers.
When loading pretrained weights from a weights file, it is recommended to load the weights into the original checkpointed model, and then extract the desired weights/layers into a new model.
Example:
create_functional_model <- function() { inputs <- keras_input(shape = c(784), name = "digits") outputs <- inputs |> layer_dense(64, activation = "relu", name = "dense_1") |> layer_dense(64, activation = "relu", name = "dense_2") |> layer_dense(10, name = "predictions") keras_model(inputs, outputs, name = "3_layer_mlp") } functional_model <- create_functional_model() functional_model |> save_model_weights("pretrained.weights.h5") # In a separate program: pretrained_model <- create_functional_model() pretrained_model |> load_model_weights("pretrained.weights.h5") # Create a new model by extracting layers from the original model: extracted_layers <- pretrained_model$layers |> head(-1) model <- keras_model_sequential(layers = extracted_layers) |> layer_dense(5, name = "dense_3") summary(model)
## [1mModel: "sequential_4"[0m ## ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ ## ┃[1m [0m[1mLayer (type) [0m[1m [0m┃[1m [0m[1mOutput Shape [0m[1m [0m┃[1m [0m[1m Param #[0m[1m [0m┃ ## ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ ## │ dense_1 ([38;5;33mDense[0m) │ ([38;5;45mNone[0m, [38;5;34m64[0m) │ [38;5;34m50,240[0m │ ## ├─────────────────────────────────┼────────────────────────┼───────────────┤ ## │ dense_2 ([38;5;33mDense[0m) │ ([38;5;45mNone[0m, [38;5;34m64[0m) │ [38;5;34m4,160[0m │ ## ├─────────────────────────────────┼────────────────────────┼───────────────┤ ## │ dense_3 ([38;5;33mDense[0m) │ ([38;5;45mNone[0m, [38;5;34m5[0m) │ [38;5;34m325[0m │ ## └─────────────────────────────────┴────────────────────────┴───────────────┘ ## [1m Total params: [0m[38;5;34m54,725[0m (213.77 KB) ## [1m Trainable params: [0m[38;5;34m54,725[0m (213.77 KB) ## [1m Non-trainable params: [0m[38;5;34m0[0m (0.00 B)
Specifications:
get_config()
should return a JSON-serializable named list in order to be
compatible with the Keras architecture and model-saving APIs.from_config(config)
(a class method) should return a new layer or model
object that is created from the config.
The default implementation returns do.call(cls, config)
.NOTE: If all your constructor arguments are already serializable, e.g. strings and
ints, or non-custom Keras objects, overriding from_config()
is not necessary. However,
for more complex objects such as layers or models passed to initialize()
, deserialization
must be handled explicitly either in initialize
itself or overriding the from_config()
method.
Example:
layer_my_dense <- register_keras_serializable( package = "MyLayers", name = "KernelMult", object = Layer( "MyDense", initialize = function(units, ..., kernel_regularizer = NULL, kernel_initializer = NULL, nested_model = NULL) { super$initialize(...) self$hidden_units <- units self$kernel_regularizer <- kernel_regularizer self$kernel_initializer <- kernel_initializer self$nested_model <- nested_model }, get_config = function() { config <- super$get_config() # Update the config with the custom layer's parameters config <- modifyList(config, list( units = self$hidden_units, kernel_regularizer = self$kernel_regularizer, kernel_initializer = self$kernel_initializer, nested_model = self$nested_model )) config }, build = function(input_shape) { input_units <- tail(input_shape, 1) self$kernel <- self$add_weight( name = "kernel", shape = shape(input_units, self$hidden_units), regularizer = self$kernel_regularizer, initializer = self$kernel_initializer, ) }, call = function(inputs) { op_matmul(inputs, self$kernel) } ) ) layer <- layer_my_dense(units = 16, kernel_regularizer = "l1", kernel_initializer = "ones") layer3 <- layer_my_dense(units = 64, nested_model = layer) config <- serialize_keras_object(layer3) str(config)
## List of 4 ## $ module : chr "<r-globalenv>" ## $ class_name : chr "MyDense" ## $ config :List of 5 ## ..$ name : chr "my_dense_1" ## ..$ trainable : logi TRUE ## ..$ dtype :List of 4 ## .. ..$ module : chr "keras" ## .. ..$ class_name : chr "DTypePolicy" ## .. ..$ config :List of 1 ## .. .. ..$ name: chr "float32" ## .. ..$ registered_name: NULL ## ..$ units : num 64 ## ..$ nested_model:List of 4 ## .. ..$ module : chr "<r-globalenv>" ## .. ..$ class_name : chr "MyDense" ## .. ..$ config :List of 6 ## .. .. ..$ name : chr "my_dense" ## .. .. ..$ trainable : logi TRUE ## .. .. ..$ dtype :List of 4 ## .. .. .. ..$ module : chr "keras" ## .. .. .. ..$ class_name : chr "DTypePolicy" ## .. .. .. ..$ config :List of 1 ## .. .. .. .. ..$ name: chr "float32" ## .. .. .. ..$ registered_name: NULL ## .. .. ..$ units : num 16 ## .. .. ..$ kernel_regularizer: chr "l1" ## .. .. ..$ kernel_initializer: chr "ones" ## .. ..$ registered_name: chr "MyLayers>KernelMult" ## $ registered_name: chr "MyLayers>KernelMult"
new_layer <- deserialize_keras_object(config) new_layer
## <MyDense name=my_dense_1, built=False> ## signature: (*args, **kwargs)
Note that overriding from_config
is unnecessary above for MyDense
because
hidden_units
, kernel_initializer
, and kernel_regularizer
are ints, strings, and a
built-in Keras object, respectively. This means that the default from_config
implementation of cls(!!!config)
will work as intended.
For more complex objects, such as layers and models passed to initialize()
, for
example, you must explicitly deserialize these objects. Let's take a look at an example
of a model where a from_config
override is necessary.
Example:
`%||%` <- \(x, y) if(is.null(x)) y else x layer_custom_model <- register_keras_serializable( package = "ComplexModels", object = Layer( "CustomModel", initialize = function(first_layer, second_layer = NULL, ...) { super$initialize(...) self$first_layer <- first_layer self$second_layer <- second_layer %||% layer_dense(, 8) }, get_config = function() { config <- super$get_config() config <- modifyList(config, list( first_layer = self$first_layer, second_layer = self$second_layer )) config }, from_config = function(config) { config$first_layer %<>% deserialize_keras_object() config$second_layer %<>% deserialize_keras_object() # note that the class is available in methods under the classname symbol, # (`CustomModel` for this class), and also under the symbol `__class__` cls(!!!config) # CustomModel(!!!config) }, call = function(self, inputs) { inputs |> self$first_layer() |> self$second_layer() } ) ) # Let's make our first layer the custom layer from the previous example (MyDense) inputs <- keras_input(c(32)) outputs <- inputs |> layer_custom_model(first_layer=layer) model <- keras_model(inputs, outputs) config <- get_config(model) new_model <- from_config(config)
The serialization format has a special key for custom objects registered via
register_keras_serializable()
. This registered_name
key allows for easy
retrieval at loading/deserialization time while also allowing users to add custom naming.
Let's take a look at the config from serializing the custom layer MyDense
we defined
above.
Example:
layer <- layer_my_dense( units = 16, kernel_regularizer = regularizer_l1_l2(l1 = 1e-5, l2 = 1e-4), kernel_initializer = "ones", ) config <- serialize_keras_object(layer) str(config)
## List of 4 ## $ module : chr "<r-globalenv>" ## $ class_name : chr "MyDense" ## $ config :List of 6 ## ..$ name : chr "my_dense_2" ## ..$ trainable : logi TRUE ## ..$ dtype :List of 4 ## .. ..$ module : chr "keras" ## .. ..$ class_name : chr "DTypePolicy" ## .. ..$ config :List of 1 ## .. .. ..$ name: chr "float32" ## .. ..$ registered_name: NULL ## ..$ units : num 16 ## ..$ kernel_regularizer:List of 4 ## .. ..$ module : chr "keras.regularizers" ## .. ..$ class_name : chr "L1L2" ## .. ..$ config :List of 2 ## .. .. ..$ l1: num 1e-05 ## .. .. ..$ l2: num 1e-04 ## .. ..$ registered_name: NULL ## ..$ kernel_initializer: chr "ones" ## $ registered_name: chr "MyLayers>KernelMult"
As shown, the registered_name
key contains the lookup information for the Keras master
list, including the package MyLayers
and the custom name KernelMult
that we gave when calling
register_keras_serializables()
. Take a look again at the custom
class definition/registration here.
Note that the class_name
key contains the original name of the class, allowing for
proper re-initialization in from_config
.
Additionally, note that the module
key is NULL
since this is a custom object.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.