| dataset_reuters | R Documentation |
Dataset of 11,228 newswires from Reuters, labeled over 46 topics. As with
dataset_imdb() , each wire is encoded as a sequence of word indexes (same
conventions).
dataset_reuters(
path = "reuters.npz",
num_words = NULL,
skip_top = 0L,
maxlen = NULL,
test_split = 0.2,
seed = 113L,
start_char = 1L,
oov_char = 2L,
index_from = 3L,
convert = TRUE
)
dataset_reuters_word_index(path = "reuters_word_index.pkl")
path |
Where to cache the data (relative to |
num_words |
Max number of words to include. Words are ranked by how often they occur (in the training set) and only the most frequent words are kept |
skip_top |
Skip the top N most frequently occuring words (which may not be informative). |
maxlen |
Truncate sequences after this length. |
test_split |
Fraction of the dataset to be used as test data. |
seed |
Random seed for sample shuffling. |
start_char |
The start of a sequence will be marked with this character. Set to 1 because 0 is usually the padding character. |
oov_char |
words that were cut out because of the |
index_from |
index actual words with this index and higher. |
convert |
When |
Lists of training and test data: train$x, train$y, test$x, test$y
with same format as dataset_imdb(). The dataset_reuters_word_index()
function returns a list where the names are words and the values are
integer. e.g. word_index[["giraffe"]] might return 1234.
train/ - x - y test/ - x - y
str(dataset_reuters())
## List of 2 ## $ train:List of 2 ## ..$ x:List of 8982 ## .. ..$ : int [1:87] 1 27595 28842 8 43 10 447 5 25 207 ... ## .. ..$ : int [1:56] 1 3267 699 3434 2295 56 16784 7511 9 56 ... ## .. ..$ : int [1:139] 1 53 12 284 15 14 272 26 53 959 ... ## .. ..$ : int [1:224] 1 4 686 867 558 4 37 38 309 2276 ... ## .. ..$ : int [1:101] 1 8295 111 8 25 166 40 638 10 436 ... ## .. ..$ : int [1:116] 1 4 37 38 309 213 349 1632 48 193 ... ## .. .. [list output truncated] ## ..$ y: int [1:8982] 3 4 3 4 4 4 4 3 3 16 ... ## $ test :List of 2 ## ..$ x:List of 2246 ## .. ..$ : int [1:145] 1 4 1378 2025 9 697 4622 111 8 25 ... ## .. ..$ : int [1:745] 1 2768 283 122 7 4 89 544 463 29 ... ## .. ..$ : int [1:228] 1 4 309 2276 4759 5 2015 403 1920 33 ... ## .. ..$ : int [1:172] 1 11786 13716 65 9 249 1096 8 16 515 ... ## .. ..$ : int [1:187] 1 470 354 18270 4231 62 2373 509 1687 5138 ... ## .. ..$ : int [1:80] 1 53 134 26 14 102 26 39 5150 18 ... ## .. .. [list output truncated] ## ..$ y: int [1:2246] 3 10 1 4 4 3 3 3 3 3 ...
str(dataset_reuters(convert = FALSE))
## List of 2 ## $ train:List of 2 ## ..$ x: <numpy.ndarray shape(8982), dtype=object> ## ..$ y: <numpy.ndarray shape(8982), dtype=int64> ## $ test :List of 2 ## ..$ x: <numpy.ndarray shape(2246), dtype=object> ## ..$ y: <numpy.ndarray shape(2246), dtype=int64>
Other datasets:
dataset_boston_housing()
dataset_california_housing()
dataset_cifar10()
dataset_cifar100()
dataset_fashion_mnist()
dataset_imdb()
dataset_mnist()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.