| image_dataset_from_directory | R Documentation | 
tf.data.Dataset from image files in a directory.If your directory structure is:
main_directory/ ...class_a/ ......a_image_1.jpg ......a_image_2.jpg ...class_b/ ......b_image_1.jpg ......b_image_2.jpg
Then calling image_dataset_from_directory(main_directory, labels = 'inferred') will return a tf.data.Dataset that yields batches of
images from the subdirectories class_a and class_b, together with labels
0 and 1 (0 corresponding to class_a and 1 corresponding to class_b).
Supported image formats: .jpeg, .jpg, .png, .bmp, .gif.
Animated gifs are truncated to the first frame.
image_dataset_from_directory(
  directory,
  labels = "inferred",
  label_mode = "int",
  class_names = NULL,
  color_mode = "rgb",
  batch_size = 32L,
  image_size = c(256L, 256L),
  shuffle = TRUE,
  seed = NULL,
  validation_split = NULL,
  subset = NULL,
  interpolation = "bilinear",
  follow_links = FALSE,
  crop_to_aspect_ratio = FALSE,
  pad_to_aspect_ratio = FALSE,
  data_format = NULL,
  verbose = TRUE
)
directory | 
 Directory where the data is located.
If   | 
labels | 
 Either   | 
label_mode | 
 String describing the encoding of  
  | 
class_names | 
 Only valid if   | 
color_mode | 
 One of   | 
batch_size | 
 Size of the batches of data. Defaults to 32.
If   | 
image_size | 
 Size to resize images to after they are read from disk,
specified as   | 
shuffle | 
 Whether to shuffle the data. Defaults to   | 
seed | 
 Optional random seed for shuffling and transformations.  | 
validation_split | 
 Optional float between 0 and 1, fraction of data to reserve for validation.  | 
subset | 
 Subset of the data to return.
One of   | 
interpolation | 
 String, the interpolation method used when
resizing images.
Supports   | 
follow_links | 
 Whether to visit subdirectories pointed to by symlinks.
Defaults to   | 
crop_to_aspect_ratio | 
 If   | 
pad_to_aspect_ratio | 
 If   | 
data_format | 
 If   | 
verbose | 
 Whether to display number information on classes and
number of files found. Defaults to   | 
A tf.data.Dataset object.
 If label_mode is NULL, it yields float32 tensors of shape
(batch_size, image_size[1], image_size[2], num_channels),
encoding images (see below for rules regarding num_channels).
 Otherwise, it yields a tuple (images, labels), where images has
shape (batch_size, image_size[1], image_size[2], num_channels),
and labels follows the format described below.
Rules regarding labels format:
 if label_mode is "int", the labels are an int32 tensor of shape
(batch_size,).
 if label_mode is "binary", the labels are a float32 tensor of
1s and 0s of shape (batch_size, 1).
 if label_mode is "categorical", the labels are a float32 tensor
of shape (batch_size, num_classes), representing a one-hot
encoding of the class index.
Rules regarding number of channels in the yielded images:
 if color_mode is "grayscale",
there's 1 channel in the image tensors.
 if color_mode is "rgb",
there are 3 channels in the image tensors.
 if color_mode is "rgba",
there are 4 channels in the image tensors.
Other dataset utils: 
audio_dataset_from_directory() 
split_dataset() 
text_dataset_from_directory() 
timeseries_dataset_from_array() 
Other utils: 
audio_dataset_from_directory() 
clear_session() 
config_disable_interactive_logging() 
config_disable_traceback_filtering() 
config_enable_interactive_logging() 
config_enable_traceback_filtering() 
config_is_interactive_logging_enabled() 
config_is_traceback_filtering_enabled() 
get_file() 
get_source_inputs() 
image_array_save() 
image_from_array() 
image_load() 
image_smart_resize() 
image_to_array() 
layer_feature_space() 
normalize() 
pad_sequences() 
set_random_seed() 
split_dataset() 
text_dataset_from_directory() 
timeseries_dataset_from_array() 
to_categorical() 
zip_lists() 
Other preprocessing: 
image_smart_resize() 
text_dataset_from_directory() 
timeseries_dataset_from_array() 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.