| initializer_lecun_normal | R Documentation | 
Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized.
Draws samples from a truncated normal distribution centered on 0 with
stddev = sqrt(1 / fan_in) where fan_in is the number of input units in
the weight tensor.
initializer_lecun_normal(seed = NULL)
| seed | An integer or instance of
 | 
An Initializer instance that can be passed to layer or variable
constructors, or called directly with a shape to return a Tensor.
# Standalone usage: initializer <- initializer_lecun_normal() values <- initializer(shape = c(2, 2))
# Usage in a Keras layer: initializer <- initializer_lecun_normal() layer <- layer_dense(units = 3, kernel_initializer = initializer)
Other random initializers: 
initializer_glorot_normal() 
initializer_glorot_uniform() 
initializer_he_normal() 
initializer_he_uniform() 
initializer_lecun_uniform() 
initializer_orthogonal() 
initializer_random_normal() 
initializer_random_uniform() 
initializer_truncated_normal() 
initializer_variance_scaling() 
Other initializers: 
initializer_constant() 
initializer_glorot_normal() 
initializer_glorot_uniform() 
initializer_he_normal() 
initializer_he_uniform() 
initializer_identity() 
initializer_lecun_uniform() 
initializer_ones() 
initializer_orthogonal() 
initializer_random_normal() 
initializer_random_uniform() 
initializer_stft() 
initializer_truncated_normal() 
initializer_variance_scaling() 
initializer_zeros() 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.