| layer_average | R Documentation | 
It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same shape).
layer_average(inputs, ...)
| inputs | layers to combine | 
| ... | For forward/backward compatability. | 
The return value depends on the value provided for the first argument.
If  object is:
 a keras_model_sequential(), then the layer is added to the sequential model
(which is modified in place). To enable piping, the sequential model is also
returned, invisibly.
 a keras_input(), then the output tensor from calling layer(input) is returned.
NULL or missing, then a Layer instance is returned.
input_shape <- c(1, 2, 3) x1 <- op_ones(input_shape) x2 <- op_zeros(input_shape) layer_average(x1, x2)
## tf.Tensor( ## [[[0.5 0.5 0.5] ## [0.5 0.5 0.5]]], shape=(1, 2, 3), dtype=float32)
Usage in a Keras model:
input1 <- layer_input(shape = c(16)) x1 <- input1 |> layer_dense(8, activation = 'relu') input2 <- layer_input(shape = c(32)) x2 <- input2 |> layer_dense(8, activation = 'relu') added <- layer_average(x1, x2) output <- added |> layer_dense(4) model <- keras_model(inputs = c(input1, input2), outputs = output)
Other merging layers: 
layer_add() 
layer_concatenate() 
layer_dot() 
layer_maximum() 
layer_minimum() 
layer_multiply() 
layer_subtract() 
Other layers: 
Layer() 
layer_activation() 
layer_activation_elu() 
layer_activation_leaky_relu() 
layer_activation_parametric_relu() 
layer_activation_relu() 
layer_activation_softmax() 
layer_activity_regularization() 
layer_add() 
layer_additive_attention() 
layer_alpha_dropout() 
layer_attention() 
layer_aug_mix() 
layer_auto_contrast() 
layer_average_pooling_1d() 
layer_average_pooling_2d() 
layer_average_pooling_3d() 
layer_batch_normalization() 
layer_bidirectional() 
layer_category_encoding() 
layer_center_crop() 
layer_concatenate() 
layer_conv_1d() 
layer_conv_1d_transpose() 
layer_conv_2d() 
layer_conv_2d_transpose() 
layer_conv_3d() 
layer_conv_3d_transpose() 
layer_conv_lstm_1d() 
layer_conv_lstm_2d() 
layer_conv_lstm_3d() 
layer_cropping_1d() 
layer_cropping_2d() 
layer_cropping_3d() 
layer_cut_mix() 
layer_dense() 
layer_depthwise_conv_1d() 
layer_depthwise_conv_2d() 
layer_discretization() 
layer_dot() 
layer_dropout() 
layer_einsum_dense() 
layer_embedding() 
layer_equalization() 
layer_feature_space() 
layer_flatten() 
layer_flax_module_wrapper() 
layer_gaussian_dropout() 
layer_gaussian_noise() 
layer_global_average_pooling_1d() 
layer_global_average_pooling_2d() 
layer_global_average_pooling_3d() 
layer_global_max_pooling_1d() 
layer_global_max_pooling_2d() 
layer_global_max_pooling_3d() 
layer_group_normalization() 
layer_group_query_attention() 
layer_gru() 
layer_hashed_crossing() 
layer_hashing() 
layer_identity() 
layer_integer_lookup() 
layer_jax_model_wrapper() 
layer_lambda() 
layer_layer_normalization() 
layer_lstm() 
layer_masking() 
layer_max_num_bounding_boxes() 
layer_max_pooling_1d() 
layer_max_pooling_2d() 
layer_max_pooling_3d() 
layer_maximum() 
layer_mel_spectrogram() 
layer_minimum() 
layer_mix_up() 
layer_multi_head_attention() 
layer_multiply() 
layer_normalization() 
layer_permute() 
layer_rand_augment() 
layer_random_brightness() 
layer_random_color_degeneration() 
layer_random_color_jitter() 
layer_random_contrast() 
layer_random_crop() 
layer_random_erasing() 
layer_random_flip() 
layer_random_gaussian_blur() 
layer_random_grayscale() 
layer_random_hue() 
layer_random_invert() 
layer_random_perspective() 
layer_random_posterization() 
layer_random_rotation() 
layer_random_saturation() 
layer_random_sharpness() 
layer_random_shear() 
layer_random_translation() 
layer_random_zoom() 
layer_repeat_vector() 
layer_rescaling() 
layer_reshape() 
layer_resizing() 
layer_rms_normalization() 
layer_rnn() 
layer_separable_conv_1d() 
layer_separable_conv_2d() 
layer_simple_rnn() 
layer_solarization() 
layer_spatial_dropout_1d() 
layer_spatial_dropout_2d() 
layer_spatial_dropout_3d() 
layer_spectral_normalization() 
layer_stft_spectrogram() 
layer_string_lookup() 
layer_subtract() 
layer_text_vectorization() 
layer_tfsm() 
layer_time_distributed() 
layer_torch_module_wrapper() 
layer_unit_normalization() 
layer_upsampling_1d() 
layer_upsampling_2d() 
layer_upsampling_3d() 
layer_zero_padding_1d() 
layer_zero_padding_2d() 
layer_zero_padding_3d() 
rnn_cell_gru() 
rnn_cell_lstm() 
rnn_cell_simple() 
rnn_cells_stack() 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.