| layer_conv_2d_transpose | R Documentation |
The need for transposed convolutions generally arise from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution.
layer_conv_2d_transpose(
object,
filters,
kernel_size,
strides = list(1L, 1L),
padding = "valid",
output_padding = NULL,
data_format = NULL,
dilation_rate = list(1L, 1L),
activation = NULL,
use_bias = TRUE,
kernel_initializer = "glorot_uniform",
bias_initializer = "zeros",
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
...
)
object |
Object to compose the layer with. A tensor, array, or sequential model. |
filters |
int, the dimension of the output space (the number of filters in the transposed convolution). |
kernel_size |
int or list of 1 integer, specifying the size of the transposed convolution window. |
strides |
int or list of 1 integer, specifying the stride length
of the transposed convolution. |
padding |
string, either |
output_padding |
Scalar integer or vector of two integers. Amount of padding to add to the
height and width of the output tensor. Each element must be smaller than the
corresponding stride. When |
data_format |
string, either |
dilation_rate |
Scalar integer or vector of 2 integers specifying the dilation rate. Values
other than 1 require |
activation |
Activation function. If |
use_bias |
bool, if |
kernel_initializer |
Initializer for the convolution kernel. If |
bias_initializer |
Initializer for the bias vector. If |
kernel_regularizer |
Optional regularizer for the convolution kernel. |
bias_regularizer |
Optional regularizer for the bias vector. |
activity_regularizer |
Optional regularizer function for the output. |
kernel_constraint |
Optional projection function to be applied to the
kernel after being updated by an |
bias_constraint |
Optional projection function to be applied to the
bias after being updated by an |
... |
For forward/backward compatability. |
A 4D tensor representing
activation(conv2d_transpose(inputs, kernel) + bias).
If data_format="channels_last":
A 4D tensor with shape: (batch_size, height, width, channels)
If data_format="channels_first":
A 4D tensor with shape: (batch_size, channels, height, width)
If data_format="channels_last":
A 4D tensor with shape: (batch_size, new_height, new_width, filters)
If data_format="channels_first":
A 4D tensor with shape: (batch_size, filters, new_height, new_width)
ValueError: when both strides > 1 and dilation_rate > 1.
x <- random_uniform(c(4, 10, 8, 128)) y <- x |> layer_conv_2d_transpose(32, 2, 2, activation='relu') shape(y)
## shape(4, 20, 16, 32)
# (4, 20, 16, 32)
Other convolutional layers:
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_3d()
layer_conv_3d_transpose()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_separable_conv_1d()
layer_separable_conv_2d()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_aug_mix()
layer_auto_contrast()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_cut_mix()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_equalization()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_num_bounding_boxes()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_mix_up()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_rand_augment()
layer_random_brightness()
layer_random_color_degeneration()
layer_random_color_jitter()
layer_random_contrast()
layer_random_crop()
layer_random_elastic_transform()
layer_random_erasing()
layer_random_flip()
layer_random_gaussian_blur()
layer_random_grayscale()
layer_random_hue()
layer_random_invert()
layer_random_perspective()
layer_random_posterization()
layer_random_rotation()
layer_random_saturation()
layer_random_sharpness()
layer_random_shear()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rms_normalization()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_solarization()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_stft_spectrogram()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.