| layer_normalization | R Documentation |
This layer will shift and scale inputs into a distribution centered around
0 with standard deviation 1. It accomplishes this by precomputing the mean
and variance of the data, and calling (input - mean) / sqrt(var) at
runtime.
The mean and variance values for the layer must be either supplied on
construction or learned via adapt(). adapt() will compute the mean and
variance of the data and store them as the layer's weights. adapt() should
be called before fit(), evaluate(), or predict().
layer_normalization(
object,
axis = -1L,
mean = NULL,
variance = NULL,
invert = FALSE,
...
)
object |
Object to compose the layer with. A tensor, array, or sequential model. |
axis |
Integer, list of integers, or NULL. The axis or axes that should
have a separate mean and variance for each index in the shape.
For example, if shape is |
mean |
The mean value(s) to use during normalization. The passed value(s)
will be broadcast to the shape of the kept axes above;
if the value(s) cannot be broadcast, an error will be raised when
this layer's |
variance |
The variance value(s) to use during normalization. The passed
value(s) will be broadcast to the shape of the kept axes above;
if the value(s) cannot be broadcast, an error will be raised when
this layer's |
invert |
If |
... |
For forward/backward compatability. |
The return value depends on the value provided for the first argument.
If object is:
a keras_model_sequential(), then the layer is added to the sequential model
(which is modified in place). To enable piping, the sequential model is also
returned, invisibly.
a keras_input(), then the output tensor from calling layer(input) is returned.
NULL or missing, then a Layer instance is returned.
Calculate a global mean and variance by analyzing the dataset in adapt().
adapt_data <- op_array(c(1., 2., 3., 4., 5.), dtype='float32') input_data <- op_array(c(1., 2., 3.), dtype='float32') layer <- layer_normalization(axis = NULL) layer %>% adapt(adapt_data) layer(input_data)
## tf.Tensor([-1.4142135 -0.70710677 0. ], shape=(3), dtype=float32)
Calculate a mean and variance for each index on the last axis.
adapt_data <- op_array(rbind(c(0., 7., 4.),
c(2., 9., 6.),
c(0., 7., 4.),
c(2., 9., 6.)), dtype='float32')
input_data <- op_array(matrix(c(0., 7., 4.), nrow = 1), dtype='float32')
layer <- layer_normalization(axis=-1)
layer %>% adapt(adapt_data)
layer(input_data)
## tf.Tensor([[-1. -1. -1.]], shape=(1, 3), dtype=float32)
Pass the mean and variance directly.
input_data <- op_array(rbind(1, 2, 3), dtype='float32') layer <- layer_normalization(mean=3., variance=2.) layer(input_data)
## tf.Tensor( ## [[-1.4142135 ] ## [-0.70710677] ## [ 0. ]], shape=(3, 1), dtype=float32)
Use the layer to de-normalize inputs (after adapting the layer).
adapt_data <- op_array(rbind(c(0., 7., 4.),
c(2., 9., 6.),
c(0., 7., 4.),
c(2., 9., 6.)), dtype='float32')
input_data <- op_array(c(1., 2., 3.), dtype='float32')
layer <- layer_normalization(axis=-1, invert=TRUE)
layer %>% adapt(adapt_data)
layer(input_data)
## tf.Tensor([[ 2. 10. 8.]], shape=(1, 3), dtype=float32)
Other numerical features preprocessing layers:
layer_discretization()
Other preprocessing layers:
layer_aug_mix()
layer_auto_contrast()
layer_category_encoding()
layer_center_crop()
layer_cut_mix()
layer_discretization()
layer_equalization()
layer_feature_space()
layer_hashed_crossing()
layer_hashing()
layer_integer_lookup()
layer_max_num_bounding_boxes()
layer_mel_spectrogram()
layer_mix_up()
layer_rand_augment()
layer_random_brightness()
layer_random_color_degeneration()
layer_random_color_jitter()
layer_random_contrast()
layer_random_crop()
layer_random_erasing()
layer_random_flip()
layer_random_gaussian_blur()
layer_random_grayscale()
layer_random_hue()
layer_random_invert()
layer_random_perspective()
layer_random_posterization()
layer_random_rotation()
layer_random_saturation()
layer_random_sharpness()
layer_random_shear()
layer_random_translation()
layer_random_zoom()
layer_rescaling()
layer_resizing()
layer_solarization()
layer_stft_spectrogram()
layer_string_lookup()
layer_text_vectorization()
Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_aug_mix()
layer_auto_contrast()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_cut_mix()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_equalization()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_num_bounding_boxes()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_mix_up()
layer_multi_head_attention()
layer_multiply()
layer_permute()
layer_rand_augment()
layer_random_brightness()
layer_random_color_degeneration()
layer_random_color_jitter()
layer_random_contrast()
layer_random_crop()
layer_random_erasing()
layer_random_flip()
layer_random_gaussian_blur()
layer_random_grayscale()
layer_random_hue()
layer_random_invert()
layer_random_perspective()
layer_random_posterization()
layer_random_rotation()
layer_random_saturation()
layer_random_sharpness()
layer_random_shear()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rms_normalization()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_solarization()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_stft_spectrogram()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.