| loss_categorical_generalized_cross_entropy | R Documentation |
The generalized cross entropy (GCE) loss offers robustness to noisy labels by
interpolating between categorical cross entropy (q -> 0) and mean absolute
error (q -> 1). For a true-class probability p and noise parameter q,
the loss is loss = (1 - p^q) / q.
loss_categorical_generalized_cross_entropy(
y_true,
y_pred,
q = 0.5,
...,
reduction = "sum_over_batch_size",
name = "categorical_generalized_cross_entropy",
dtype = NULL
)
y_true |
Integer class indices with shape |
y_pred |
Predicted class probabilities with shape |
q |
Float in
|
... |
For forward/backward compatibility. |
reduction |
Type of reduction to apply to the loss. In almost all cases
this should be |
name |
Optional name for the loss instance. |
dtype |
Dtype used for loss computations. Defaults to |
Generalized cross entropy loss value(s).
Zhang & Sabuncu (2018), "Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels"
y_true <- c(0L, 1L, 0L, 1L) y_pred <- rbind( c(0.7, 0.3), c(0.2, 0.8), c(0.6, 0.4), c(0.4, 0.6) ) gce <- loss_categorical_generalized_cross_entropy(q = 0.7) gce(y_true, y_pred)
## tf.Tensor(0.34529287, shape=(), dtype=float32)
Other losses:
Loss()
loss_binary_crossentropy()
loss_binary_focal_crossentropy()
loss_categorical_crossentropy()
loss_categorical_focal_crossentropy()
loss_categorical_hinge()
loss_circle()
loss_cosine_similarity()
loss_ctc()
loss_dice()
loss_hinge()
loss_huber()
loss_kl_divergence()
loss_log_cosh()
loss_mean_absolute_error()
loss_mean_absolute_percentage_error()
loss_mean_squared_error()
loss_mean_squared_logarithmic_error()
loss_poisson()
loss_sparse_categorical_crossentropy()
loss_squared_hinge()
loss_tversky()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_hinge()
metric_huber()
metric_kl_divergence()
metric_log_cosh()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_poisson()
metric_sparse_categorical_crossentropy()
metric_squared_hinge()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.