| loss_mean_squared_logarithmic_error | R Documentation | 
y_true and y_pred.Note that y_pred and y_true cannot be less or equal to 0. Negative
values and 0 values will be replaced with config_epsilon()
(default to 1e-7).
Formula:
loss <- mean(square(log(y_true + 1) - log(y_pred + 1)))
loss_mean_squared_logarithmic_error(
  y_true,
  y_pred,
  ...,
  reduction = "sum_over_batch_size",
  name = "mean_squared_logarithmic_error",
  dtype = NULL
)
| y_true | Ground truth values with shape =  | 
| y_pred | The predicted values with shape =  | 
| ... | For forward/backward compatability. | 
| reduction | Type of reduction to apply to the loss. In almost all cases
this should be  | 
| name | Optional name for the loss instance. | 
| dtype | The dtype of the loss's computations. Defaults to  | 
Mean squared logarithmic error values with shape = [batch_size, d0, .. dN-1].
y_true <- random_uniform(c(2, 3), 0, 2) y_pred <- random_uniform(c(2, 3)) loss <- loss_mean_squared_logarithmic_error(y_true, y_pred)
Other losses: 
Loss() 
loss_binary_crossentropy() 
loss_binary_focal_crossentropy() 
loss_categorical_crossentropy() 
loss_categorical_focal_crossentropy() 
loss_categorical_hinge() 
loss_circle() 
loss_cosine_similarity() 
loss_ctc() 
loss_dice() 
loss_hinge() 
loss_huber() 
loss_kl_divergence() 
loss_log_cosh() 
loss_mean_absolute_error() 
loss_mean_absolute_percentage_error() 
loss_mean_squared_error() 
loss_poisson() 
loss_sparse_categorical_crossentropy() 
loss_squared_hinge() 
loss_tversky() 
metric_binary_crossentropy() 
metric_binary_focal_crossentropy() 
metric_categorical_crossentropy() 
metric_categorical_focal_crossentropy() 
metric_categorical_hinge() 
metric_hinge() 
metric_huber() 
metric_kl_divergence() 
metric_log_cosh() 
metric_mean_absolute_error() 
metric_mean_absolute_percentage_error() 
metric_mean_squared_error() 
metric_mean_squared_logarithmic_error() 
metric_poisson() 
metric_sparse_categorical_crossentropy() 
metric_squared_hinge() 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.