| metric_false_negatives | R Documentation |
If sample_weight is given, calculates the sum of the weights of
false negatives. This metric creates one local variable, accumulator
that is used to keep track of the number of false negatives.
If sample_weight is NULL, weights default to 1.
Use sample_weight of 0 to mask values.
metric_false_negatives(..., thresholds = NULL, name = NULL, dtype = NULL)
... |
For forward/backward compatability. |
thresholds |
(Optional) Defaults to |
name |
(Optional) string name of the metric instance. |
dtype |
(Optional) data type of the metric result. |
a Metric instance is returned. The Metric instance can be passed
directly to compile(metrics = ), or used as a standalone object. See
?Metric for example usage.
Standalone usage:
m <- metric_false_negatives() m$update_state(c(0, 1, 1, 1), c(0, 1, 0, 0)) m$result()
## tf.Tensor(2.0, shape=(), dtype=float32)
m$reset_state() m$update_state(c(0, 1, 1, 1), c(0, 1, 0, 0), sample_weight=c(0, 0, 1, 0)) m$result()
## tf.Tensor(1.0, shape=(), dtype=float32)
# 1.0
Other confusion metrics:
metric_auc()
metric_false_positives()
metric_precision()
metric_precision_at_recall()
metric_recall()
metric_recall_at_precision()
metric_sensitivity_at_specificity()
metric_specificity_at_sensitivity()
metric_true_negatives()
metric_true_positives()
Other metrics:
Metric()
custom_metric()
metric_auc()
metric_binary_accuracy()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_binary_iou()
metric_categorical_accuracy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_concordance_correlation()
metric_cosine_similarity()
metric_f1_score()
metric_false_positives()
metric_fbeta_score()
metric_hinge()
metric_huber()
metric_iou()
metric_kl_divergence()
metric_log_cosh()
metric_log_cosh_error()
metric_mean()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_iou()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_mean_wrapper()
metric_one_hot_iou()
metric_one_hot_mean_iou()
metric_pearson_correlation()
metric_poisson()
metric_precision()
metric_precision_at_recall()
metric_r2_score()
metric_recall()
metric_recall_at_precision()
metric_root_mean_squared_error()
metric_sensitivity_at_specificity()
metric_sparse_categorical_accuracy()
metric_sparse_categorical_crossentropy()
metric_sparse_top_k_categorical_accuracy()
metric_specificity_at_sensitivity()
metric_squared_hinge()
metric_sum()
metric_top_k_categorical_accuracy()
metric_true_negatives()
metric_true_positives()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.