RiskPredictor
kfre
is an R implementation of helpers around the Kidney Failure Risk Equation (KFRE), including:
install.packages("kfre")
# install.packages("remotes")
remotes::install_github("lshpaner/kfre_r")
Core imports: R6
, stats
, ggplot2
, pROC
, precrec
Suggested for tests/vignettes: testthat (>= 3.0.0)
, knitr
, rmarkdown
toy <- data.frame(
age = c(55, 72),
sex_txt = c("male", "female"),
eGFR = c(45, 28),
uACR = c(120, 800),
dm = c(1, 0),
htn = c(1, 1),
albumin = c(4.2, 3.4),
phosphorous = c(3.3, 4.6),
bicarbonate = c(24, 22),
calcium = c(9.1, 9.8),
stringsAsFactors = FALSE
)
cols <- list(
age = "age",
sex = "sex_txt",
eGFR = "eGFR",
uACR = "uACR",
dm = "dm",
htn = "htn",
albumin = "albumin",
phosphorous = "phosphorous",
bicarbonate = "bicarbonate",
calcium = "calcium"
)
RiskPredictor
rp <- RiskPredictor$new(df = toy, columns = cols)
# 4-variable KFRE (2-year), North America constants
p4_2y <- rp$predict_kfre(
years = 2, is_north_american = TRUE,
use_extra_vars = FALSE, num_vars = 4
)
# 6-variable KFRE (5-year)
p6_5y <- rp$predict_kfre(
years = 5, is_north_american = TRUE,
use_extra_vars = TRUE, num_vars = 6
)
# 8-variable KFRE (2-year)
p8_2y <- rp$predict_kfre(
years = 2, is_north_american = TRUE,
use_extra_vars = TRUE, num_vars = 8
)
p4_2y
p6_5y
p8_2y
# Male, 55yo, 2-year risk (4-var)
rp$kfre_person(
age = 55, is_male = TRUE,
eGFR = 45, uACR = 120,
is_north_american = TRUE, years = 2
)
# Female, 72yo, 5-year risk (6-var)
rp$kfre_person(
age = 72, is_male = FALSE,
eGFR = 28, uACR = 800,
is_north_american = TRUE, years = 5,
dm = 0, htn = 1
)
# Female, 72yo, 2-year risk (8-var)
rp$kfre_person(
age = 72, is_male = FALSE,
eGFR = 28, uACR = 800,
is_north_american = TRUE, years = 2,
albumin = 3.4, phosphorous = 4.6, bicarbonate = 22, calcium = 9.8
)
data.frame
toy_kfre <- add_kfre_risk_col(
df = toy,
age_col = "age",
sex_col = "sex_txt",
eGFR_col = "eGFR",
uACR_col = "uACR",
dm_col = "dm",
htn_col = "htn",
albumin_col = "albumin",
phosphorous_col = "phosphorous",
bicarbonate_col = "bicarbonate",
calcium_col = "calcium",
num_vars = c(4, 6, 8),
years = c(2, 5),
is_north_american = TRUE,
copy = TRUE
)
names(toy_kfre)
head(toy_kfre)
# Adds:
# kfre_4var_2year, kfre_4var_5year,
# kfre_6var_2year, kfre_6var_5year,
# kfre_8var_2year, kfre_8var_5year
# ESRD outcome within 2 years (duration is in days → converted to years)
out <- data.frame(
eGFR = c(95, 25),
ESRD_flag = c(1, 1),
followup_days = c(200, 1000)
)
out <- class_esrd_outcome(
df = out,
col = "ESRD_flag",
years = 2,
duration_col = "followup_days",
prefix = "esrd",
create_years_col = TRUE
)
# Adds: ESRD_duration_years and esrd_2_year_outcome
# CKD stage labels
out <- class_ckd_stages(
df = out,
egfr_col = "eGFR",
stage_col = "stage",
combined_stage_col = "stage_combined"
)
table(out$stage)
table(out$stage_combined)
df_pcr <- data.frame(
sex = c("female","male","female"),
dm = c(1,0,1),
htn = c(1,1,0),
pcr = c(150, 600, 50)
)
acr <- upcr_uacr(
df_pcr,
sex_col = "sex",
diabetes_col = "dm",
hypertension_col = "htn",
upcr_col = "pcr",
female_str = "female"
)
acr
Your data.frame must include:
*_2_year_outcome
/ *_5_year_outcome
kfre_{n}var_{year}year
, e.g. kfre_4var_2year
met <- eval_kfre_metrics(
df = toy_kfre, # must contain truth + prediction columns
n_var_list = c(4, 6, 8),
outcome_years = c(2, 5),
decimal_places = 4
)
met
# Rows: Metrics; Cols: "{2_year|5_year}_{4|6|8}_var_kfre"
# Basic: compute & plot both ROC and PR (no files written)
plot_kfre_metrics(
df = toy_kfre,
num_vars = c(4, 6, 8),
plot_type = "all_plots",
mode = "both", # compute + plot
show_years = c(2, 5)
)
# Save to disk (PNG/SVG)
plot_kfre_metrics(
df = toy_kfre,
num_vars = c(4, 6),
plot_type = "auc_roc",
mode = "both",
show_years = c(2, 5),
save_plots = TRUE,
image_path_png = "plots",
image_prefix = "kfre"
)
If you’ve cloned the repo:
library(devtools)
devtools::load_all(".")
devtools::test()
You should see unit tests for both the end-to-end flow and the evaluation utilities.
RiskPredictor
(R6)$predict_kfre(years, is_north_american, use_extra_vars, num_vars)
$kfre_person(...)
Wrappers:
predict_kfre(df, columns, years, is_north_american, use_extra_vars, num_vars)
add_kfre_risk_col(...)
Utilities:
upcr_uacr(...)
perform_conversions(...)
class_esrd_outcome(...)
class_ckd_stages(...)
eval_kfre_metrics(...)
plot_kfre_metrics(...)
The R implementations are designed to mirror the Python versions (naming, shapes,
and expected columns). Where packages differ (e.g., ROC/PR computation), we use
pROC
and precrec
to maintain metric parity.
Tangri N, Grams ME, Levey AS, et al. (2016). Multinational assessment of accuracy of equations for predicting risk of kidney failure: A meta-analysis. JAMA, 315(2), 164–174. doi:10.1001/jama.2015.18202
Tangri N, Stevens LA, Griffith J, et al. (2011). A predictive model for progression of chronic kidney disease to kidney failure. JAMA, 305(15), 1553–1559. doi:10.1001/jama.2011.451
Sumida K, Nadkarni GN, Grams ME, et al. (2020). Conversion of urine protein-creatinine ratio or urine dipstick protein to urine albumin-creatinine ratio for use in CKD screening and prognosis. Ann Intern Med, 173(6), 426–435. doi:10.7326/M20-0529
kfre
is distributed under the MIT License. See LICENSE
for more information.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.